Abstract

Autonomous vehicles (AVs) give the driver opportunity to engage in productive or pleasure-related activities, which will increase AV’s utility and value. It is anticipated that many AVs will be equipped with active suspension extended with road disturbance preview capability to provide the necessary superior ride comfort resulting in almost steady work or play platform. This article deals with assessing the benefits of introducing various active suspensions and related linear quadratic regulator (LQR) controls in terms of improving the work/leisure ability. The study relies on high-performance shaker rig-based tests of a group of 44 drivers involved in reading/writing, drawing, and subjective ride comfort rating tasks. The test results indicate that there is a threshold of root-mean-square vertical acceleration, below which the task execution performance is similar to that corresponding to standstill conditions. For the given, relatively harsh road disturbance profile, only the fully active suspension with road preview control can suppress the vertical acceleration below the above critical superior comfort threshold. However, when adding an active seat suspension, the range of chassis suspension types for superior ride comfort is substantially extended and can include semi-active suspension and even passive suspension in some extreme cases that can, however, lead to excessive relative motion between the seat and the vehicle floor. The design requirements gained through simulation analysis, and extended with cost and packaging requirements related to passenger car applications, have guided design of two active seat suspension concepts applicable to the shaker rig and production vehicles.

References

1.
Burns
,
L. D.
, and
Shulgan
,
C.
,
2018
,
Autonomy
,
HarperCollins Publishers
, 1st ed.,
New York
.
2.
Litman
,
T.
,
2019
,
Autonomous Vehicle Implementation Predictions: Implications for Transport Planning
,
Victoria Transport Policy Institute
,
Canada
, https://www.vtpi.org/avip.pdf
3.
Tschiesner
,
A.
,
2019
,
Economic Impact of Self-Driving Cars
,
Bosch
,
Germany
, www.bosch.com/stories/economic-impact-of-self-driving-cars, Accessed June 25, 2020.
4.
Clements
,
L. M.
, and
Kockelman
,
K. M.
,
2017
, “
Economic Effects of Automated Vehicles
,”
Transp. Res. Rec.
,
2606
(
1
), pp.
106
114
. 10.3141/2606-14
5.
Hrovat
,
D.
,
Tseng
,
H. E.
, and
Deur
,
J.
,
2019
, “Optimal Vehicle Suspensions: A System-Level Study of Potential Benefits and Limitations,”
Vehicle Dynamics of Modern Passenger Cars
,
P
.
Lugner
, ed.,
Springer International Publishing
,
Cham
, pp.
109
204
.https://doi.org/10.1007/978-3-319-79008-4_3
6.
Hrovat
,
D.
,
1997
, “
Survey of Advanced Suspension Developments and Related Optimal Control Applications
,”
Automatica
,
33
(
10
), pp.
1781
1817
. 10.1016/S0005-1098(97)00101-5
7.
Daimler
,
A. G.
,
2020
, “Chassis: The First Suspension System With Eyes Now Sees Even Better,” "https://media.daimler.com/marsMediaSite/ko/en/22944501, Accessed June 30, 2020.
8.
Adcock
,
I.
,
2017
, “Audi Has Trick Active Suspension for New A8,”
SAE Automotive Engineering
, https://www.sae.org/publications/magazines/content/17autp08/, Accessed April 11, 2019.
9.
Hidrue
,
M. K.
, and
Parsons
,
G. R.
,
2015
, “
Is There a Near-Term Market for Vehicle-to-Grid Electric Vehicles?
,”
Appl. Energy
,
151
(
1
), pp.
67
76
. 10.1016/j.apenergy.2015.04.051
10.
Heidarian
,
A.
, and
Wang
,
X.
,
2019
, “
Review on Seat Suspension System Technology Development
,”
Appl. Sci.
,
9
(
14
), p.
2834
. 10.3390/app9142834
11.
McManus
,
S. J.
,
Clair
,
K. A.S. T.
,
Boileau
,
P. E.
,
Boutin
,
J.
, and
Rakheja
,
S.
,
2002
, “
Evaluation of Vibration and Shock Attenuation Performance of a Suspension Seat With a Semi-Active Magnetorheological Fluid Damper
,”
J. Sound Vib.
,
253
(
1
), pp.
313
327
. 10.1006/jsvi.2001.4262
12.
Searsseating
,
2020
, “Sears Atlas II Product Guide,” https://www.searsseating.com/pdf/Atlas_II_Product_Guide_2019.pdf, Accessed June 15, 2020.
13.
Deere
,
2020
, “John Deere Seat Catalog,” http://www.deere.co.uk/common/docs/parts_services/attachments/catalog/seat_overview_70x0_80x0_90x0.pdf, Accessed June 15, 2020.
14.
Parison
,
J.
,
2010
, “The Bose Ride System,” Bose Corporation, Framingham, MA, http://cdn2.hubspot.net/hub/460706/file-2335930475-pdf/files/Bose-Ride-system-Technical-Overview-White-Paper.pdf?t=1434399424833, Accessed April 17, 2018.
15.
Gan
,
Z.
,
Hillis
,
A. J.
, and
Darling
,
D.
,
2015
, “
Adaptive Control of an Active Seat for Occupant Vibration Reduction
,”
J. Sound Vib.
,
349
(
1
), pp.
39
55
. 10.1016/j.jsv.2015.03.050
16.
Ning
,
D.
,
Sun
,
S.
,
Du
,
H.
,
Li
,
W.
, and
Li
,
W.
,
2018
, “
Control of a Multiple-DOF Vehicle Seat Suspension With Roll and Vertical Vibration
,”
J. Sound Vib.
,
435
(
1
), pp.
170
191
. 10.1016/j.jsv.2018.08.005
17.
Maas
,
J.
,
2004
, “
Active Seat Suspension for Passenger Cars
,”
IFAC Proc. Vol.
,
37
(
14
), pp.
313
318
. 10.1016/S1474-6670(17)31122-9
18.
Gohari
,
M.
, and
Tahmasebi
,
M.
,
2015
, “
Active Off-Road Seat Suspension System Using Intelligent Active Force Control
,”
J. Low Freq. Noise Vib. Act. Control
,
34
(
4
), pp.
475
489
. 10.1260/0263-0923.34.4.475
19.
Alfadhli
,
A.
,
Darling
,
J.
, and
Hillis
,
A. J.
,
2018
, “
An Active Seat Controller With Vehicle Suspension Feedforward and Feedback States: An Experimental Study
,”
Appl. Sci.
,
8
(
4
), p.
603
. 10.3390/app8040603
20.
Alfadhli
,
A.
,
Darling
,
J.
, and
Hillis
,
A. J.
,
2018
, “
The Control of an Active Seat Suspension Using an Optimised Fuzzy Logic Controller, Based on Preview Information From a Full Vehicle Model
,”
Vibration
,
1
(
1
), pp.
20
40
. 10.3390/vibration1010003
21.
Smith
,
C. C.
,
McGehee
,
D. Y.
, and
Healey
,
A. J.
,
1978
, “
The Prediction of Passenger Riding Comfort From Acceleration Data
,”
ASME J. Dyn. Syst. Meas. Control
,
100
(
1
), pp.
34
41
. 10.1115/1.3426338
22.
Enders
,
E.
,
Burkhard
,
G.
,
Fent
,
F.
,
Lienkamp
,
M.
, and
Schramm
,
D.
,
2019
, “
Objectification Methods for Ride Comfort
,”
Forsch. Ingenieurwes.
,
83
(
4
), pp.
885
898
. 10.1007/s10010-019-00361-6
23.
International Organization for Standardization
,
1997
, “ISO 2631-1:1997 Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration, Part 1: General Requirements,” https://www.iso.org/standard/7612.html, Accessed June 21, 2018.
24.
Joshi
,
D.
,
Kedia
,
S.
, and
Muthiah
,
S.
,
2019
, “
A Study on the Repeatability of Vehicle Ride Performance Measurements
,” SAE Technical Paper, Paper No. 2019-25-0076,
SAE International
,
Warrendale, PA
, 10.4271/2019-26-0076
25.
Ekchian
,
J.
,
Graves
,
W.
,
Anderson
,
Z.
,
Giovanardi
,
M.
,
Godwin
,
O.
,
Kaplan
,
J.
,
Ventura
,
J.
,
Lackner
,
J.
, and
DiZio
,
P.
,
2016
, “
A High-Bandwidth Active Suspension for Motion Sickness Mitigation in Autonomous Vehicles
,” SAE Technical Paper, Paper No. 2016-01-1555,
SAE International
,
Warrendale, PA
, 10.4271/2016-01-1555
26.
Ibicek
,
T.
, and
Thite
,
A. N.
,
2012
, “
Quantification of Human Discomfort in a Vehicle Using a Four-Post Rig Excitation
,”
J. Low Freq. Noise Vib. Act. Control
,
21
(
1
), pp.
29
42
. 10.1260/0263-0923.31.1.29
27.
Mohajer
,
N.
,
Abdi
,
H.
,
Nelson
,
K.
, and
Nahavandi
,
S.
,
2015
, “
Vehicle Motion Simulators, a Key Step Towards Road Vehicle Dynamics Improvement
,”
Veh. Syst. Dyn.
,
53
(
8
), pp.
1204
1226
. 10.1080/00423114.2015.1039551
28.
Tatsuno
,
J.
, and
Maeda
,
S.
,
2017
, “
Driving Simulator Experiment on Ride Comfort Improvement and Low Back Pain Prevention of Autonomous Car Occupants
,”
Advances in Human Aspects of Transportation: Proceedings of the AHFE 2016 International Conference on Human Factors in Transportation
,
Walt Disney World, FL
,
July 27–31
.https://doi.org/10.1007/978-3-319-41682-3_43
29.
Ross
,
P. E.
,
2020
, “Is Coronavirus Speeding the Adoption of Driverless Technology?,”
IEEE Spectrum
,
New York
, https://spectrum.ieee.org/cars-that-think/transportation/self-driving/will-coronavirus-speed-adoption-of-driverless-technology, Accessed March 17, 2020.
31.
Kenney
,
J. B.
,
2011
, “
Dedicated Short-Range Communications (DSRC) Standards in the United States
,”
Proc. IEEE
,
99
(
7
), pp.
1162
1182
. 10.1109/JPROC.2011.2132790
32.
Anonymous
,
2019
, “China Building a Highway With Dedicated Lanes for Autonomous Vehicles,”
FutureCar
, https://www.futurecar.com/3114/China-Building-a-Highway-with-Dedicated-Lanes-for-Autonomous-Vehicles, Accessed April 4, 2020.
33.
Patel
,
V. J.
,
2020
, “Michigan Looking to Have Autonomous-Car Only Lanes,”
FutureCar
, https://www.futurecar.com/4093/Michigan-Looking-to-Have-Autonomous-Car-Only-Lanes, August 17, 2020.
34.
Shladover
,
S. E.
,
Desoer
,
C. A.
,
Hedrick
,
J. K.
,
Tomizuka
,
M.
,
Walrand
,
J.
,
Zhang
,
W. B.
,
McMahon
,
D. H.
,
Peng
,
H.
,
Sheikholeslam
,
S.
, and
McKeown
,
N.
,
1991
, “
Automatic Vehicle Control Developments in the PATH Program
,”
IEEE Trans. Veh. Technol.
,
40
(
1
), pp.
114
130
. 10.1109/25.69979
35.
Bergenheim
,
C.
,
Shladover
,
S.
, and
Coelingh
,
E.
,
2012
, “
Overview of Platooning Systems
,”
Proceeding of the 19th ITS World Congress
,
Vienna, Austria
,
Oct. 22–26
.
36.
Berger
,
S.
,
2018
, “These Are the States With the Longest and Shortest Commutes—How Does Yours Stack Up?,” https://www.cnbc.com/2018/02/22/study-states-with-the-longest-and-shortest-commutes.html, Accessed May 25, 2020.
37.
Anderson
,
Z. M.
,
Giovanardi
,
M.
,
Ekchian
,
J. A.
,
Godwin
,
O. D.
,
Tucker
,
C.
,
LaPlante
,
J. A.
,
Graves
W.
,
Avadhany
,
S.
, and
Finnegan
,
M. W.
,
2019
, “Methods and Systems for Controlling Vehicle Body Motion and Occupant Experience,” U.S. Patent No. 10,513,161, https://patents.google.com/patent/US10513161, Accessed May 26, 2020.
38.
Anderson
,
Z. M.
,
Giovanardi
,
M.
,
Ekchian
,
J. A.
,
Godwin
,
O. D.
,
Tucker
,
C.
,
LaPlante
,
J. A.
,
Graves
W.
,
Avadhany
,
S.
, and
Finnegan
,
M. W.
,
2018
, “Methods and Systems for Controlling Vehicle Body Motion and Occupant Experience,” U.S. Patent No. 9,868,332, https://patents.google.com/patent/US9868332, Accessed May 26, 2020.
39.
Streiter
,
R.
,
2008
, “
Active Preview Suspension System
,”
ATZ Worldwide
,
110
(
5
), pp.
4
11
. 10.1007/BF03225003
40.
Lu
,
J.
,
Filev
,
D. P.
,
Hrovat
,
D.
,
Tseng
,
H. E.
,
Hoffmann
,
U.
,
Baales
,
S.
, and
Seeman
,
M.
,
2015
, “Adaptive Active Suspension System With Road Preview,” U.S. Patent No. 8,996,249, https://patents.google.com/patent/US8996249, Accessed May 26, 2020.
41.
ClearMotion
,
2019
, “ClearMotion Proactive Ride”, https://www.clearmotion.com/technology, Accessed July 25, 2019.
42.
Filev
,
D.
,
Jianbo
,
L.
, and
Hrovat
,
D.
,
2013
, “
Future Mobility: Integrating Vehicle Control With Cloud Computing
,”
Mech. Eng.
,
135
(
3
), pp.
18
24
. 10.1115/1.2013-MAR-6
43.
Phillips
,
A. M.
,
McGee
,
R. A.
,
Kristinsson
,
J. G.
, and
Yu
,
H.
,
2013
, “
Smart, Connected and Electric
,”
Mech. Eng.
,
135
(
3
), pp.
4
9
. 10.1115/1.2013-MAR-4
44.
Stein
,
G.
,
Blumenthal
,
I.
, and
Shaag
,
N.
,
2020
, “Road Profile Along a Predicted Path,” U.S. Patent Application No. 2020/0062264, https://patents.google.com/patent/US20200062264A1, Accessed May 26, 2020.
45.
Wada
,
T.
,
2016
, “
Motion Sickness in Automated Vehicles
,”
Advanced Vehicle Control: Proc. 13th International Symposium on Advanced Vehicle Control (AVEC’16)
,
Munich, Germany
,
Sept 13–16
, pp.
169
174
.
46.
Tseng
,
H. E.
,
Hrovat
,
D.
,
Lu
,
J.
,
McConnell
,
M.
,
Dehmel
,
M.
, and
Seemann
,
M.
,
2016
, “Suspension Control System to Facilitate Wheel Motions During Parking,” U.S. Patent No. 9,333,828, https://patents.google.com/patent/US9333828, Accessed May 26, 2020.
47.
Lu
,
J.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2017
, “Off-Road Autonomous Driving,” U.S. Patent No. 9,849,883, https://patents.google.com/patent/US9849883, Accessed May 26, 2020.
48.
Lu
,
J.
,
Hrovat
,
D.
,
Pilutti
,
T. E.
,
Engleman
,
J. H.
,
Tseng
,
H. E.
, and
Filev
,
D. P.
,
2014
, “Adaptive Crash Height Adjustment Using Active Suspension,” U.S. Patent No. 8,892,304, https://patents.google.com/patent/US8892304, Accessed May 26, 2020.
49.
Čorić
,
M.
,
Deur
,
J.
,
Xu
,
L.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2017
, “
Optimisation of Active Suspension Control Inputs for Improved Performance of Active Safety Systems
,”
Veh. Syst. Dyn.
,
56
(
1
), pp.
1
26
. 10.1080/00423114.2017.1340652
50.
Čorić
,
M.
,
Deur
,
J.
,
Kasać
,
J.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2016
, “
Optimisation of Active Suspension Control Inputs for Improved Vehicle Handling Performance
,”
Veh. Syst. Dyn.
,
54
(
11
), pp.
1574
1600
. 10.1080/00423114.2016.1222075
51.
Deur
,
J.
,
Čorić
,
M.
,
Xu
,
L.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2016
, “
Optimization-Based Analysis of Active Suspension Authority Within Integrated Vehicle Dynamics Control Systems
,”
Advanced Vehicle Control: Proceedings of the 13th International Symposium on Advanced Vehicle Control (AVEC'16)
,
Munich, Germany
,
Sept. 13–16
, pp.
9
16
.
52.
Tseng
,
H. E.
,
Xu
,
L.
,
Hrovat
,
D.
,
Deur
,
J.
, and
Čorić
,
M.
,
2018
, “Vehicle Handling Dynamics Control Using Fully Active Suspension,” U.S. Patent No. 9,975,391, https://patents.google.com/patent/US9975391
53.
Čorić
,
M.
,
Deur
,
J.
,
Xu
,
L.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2016
, “
Optimisation of Active Suspension Control Inputs for Improved Vehicle Ride Performance
,”
Veh. Syst. Dyn.
,
54
(
7
), pp.
1004
1030
. 10.1080/00423114.2016.1177655
54.
Hrovat
,
D. D.
,
Tseng
,
H. E.
,
Lu
,
J.
, and
Xu
,
L.
,
2019
, “Obstacle Avoidance System With Active Suspensions,” U.S. Patent No. 10,293,653, https://patents.google.com/patent/US10293653, Accessed May 26, 2020.
55.
Lu
,
J.
,
Hrovat
,
D.
,
Tseng
,
H. E.
, and
Xu
,
L
,
2019
, “Systems and Methods for Vehicle Dynamics Assignment,” U.S. Patent No. 10,315,481, https://patents.google.com/patent/US10315481, Accessed May 26, 2020.
56.
Hrovat
,
D.
,
1991
, “
Optimal Suspension Performance for 2-D Vehicle Models
,”
J. Sound Vib.
,
146
(
1
), pp.
93
110
. 10.1016/0022-460X(91)90524-N
57.
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2015
, “
State of the Art Survey: Active and Semi-Active Suspension Control
,”
Veh. Syst. Dyn.
,
53
(
7
), pp.
1034
1062
. 10.1080/00423114.2015.1037313
58.
Xu
,
L.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2016
, “
Hybrid Model Predictive Control of Active Suspension With Travel Limits and Nonlinear Tire Contact Force
,”
2016 American Control Conference (ACC)
,
Boston, MA
,
July 6–8
, pp.
2415
2420
. https://doi.org/10.1109/ACC.2016.7525279
59.
Tseng
,
H. E.
, and
Hedrick
,
J. K.
,
1994
, “
Semi-Active Control Laws—Optimal and Sub-Optimal
,”
Veh. Syst. Dyn.
,
23
(
1
), pp.
545
569
. 10.1080/00423119408969074
60.
Cvok
,
I.
,
Deur
,
J.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2019
, “Comparative Performance Analysis of Active and Semi-Active Suspension With Road Preview Control,”
Advances in Dynamics of Vehicles on Roads and Tracks, IAVSD 2019
,
M
.
Klomp
, F. Bruzelius, J. Nielsen, and A. Hillemyr
, eds., Lecture Notes in Mechanical Engineering,
Springer
,
Cham
, pp.
1808
1818
. 10.1007%2F978-3-030-38077-9_206
61.
Cvok
,
I.
,
Deur
,
J.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2019
, “Analysis of Active Suspension Performance Improvement Based on Introducing Front/Rear LQ Control Coupling,”
Advances in Dynamics of Vehicles on Roads and Tracks, IAVSD 2019
,
M
.
Klomp
, F. Bruzelius, j. Nielsen, and A. Hillemyr
, eds., Lecture Notes in Mechanical Engineering,
Springer
,
Cham
, pp.
1829
1839
. https://doi.org/10.1007/978-3-030-38077-9_208
62.
Hać
,
A.
,
1992
, “
Optimal Linear Preview Control of Active Vehicle Suspension
,”
Veh. Syst. Dyn.
,
21
(
1
), pp.
167
195
. 10.1080/00423119208969008
63.
Cvok
,
I.
,
Hrgetić
,
M.
,
Hoić
,
M.
,
Deur
,
J.
, and
Ivanović
,
V.
,
2020
, “
Design of a Linear Motor-Based Shaker Rig for Testing Subjectively Perceived Ride Comfort
.”
64.
Cvok
,
I.
,
Hrgetić
,
M.
,
Deur
,
J.
,
Hrovat
,
D.
, and
Tseng
,
H. E.
,
2020
, “
A Shaker Rig-Based Testing of Perceived Ride Comfort for Various Configurations of Active Suspensions
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
11
), p.
114504
. 10.1115/1.4047665
65.
Levenshtein
,
V.
,
1966
, “
Binary Codes Capable of Correcting Deletions, Insertions, and Reversals
,”
Soviet Physics Doklady
,
10
(
8
), pp.
707
710
.
66.
Rosebrock
,
A.
,
2014
, “How-To: Python Compare Two Images,” "https://www.pyimagesearch.com/2014/09/15/python-compare-two-images/, Accessed September 10, 2019.
67.
Papaioannou
,
G.
,
Voutsinas
,
A.
,
Koulcoheris
,
D.
, and
Antoniadis
,
I.
,
2019
, “
Dynamic Performance Analysis of Vehicle Seats With Embedded Negative Stiffness Elements
,”
Veh. Syst. Dyn.
,
58
(
2
), pp.
307
337
. 10.1080/00423114.2019.1617424
68.
Kim
,
S. K.
,
White
,
S. W.
,
Bajaj
,
A. K.
, and
Davies
,
P.
,
2003
, “
Simplified Models of the Vibration of Mannequins in Car Seats
,”
J. Sound Vib.
,
264
(
1
), pp.
49
90
. 10.1016/S0022-460X(02)01164-1
69.
Hoić
,
M.
,
Kranjčević
,
N.
,
Herold
,
Z.
, and
Kostelac
,
M.
,
2020
, “
Design of an Active Seat Suspension for a Passenger Vehicle
,”
Proceedings of the Design Society: DESIGN Conference
,
Dubrovnik, Croatia
,
Oct. 26–29
, pp.
2511
2520
.
You do not currently have access to this content.