Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-1 of 1
Energy gap
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Applied Mechanics Reviews
Article Type: Review Articles
Appl. Mech. Rev. July 2020, 72(4): 040801.
Paper No: AMR-19-1022
Published Online: February 26, 2020
Abstract
Phononic crystals (PCs) and metamaterials (MMs) can exhibit abnormal properties, even far beyond those found in nature, through artificial design of the topology or ordered structure of unit cells. This emerging class of materials has diverse application potentials in many fields. Recently, the concept of tunable PCs or MMs has been proposed to manipulate a variety of wave functions on demand. In this review, we survey recent developments in tunable and active PCs and MMs, including bandgap and bandgap engineering, anomalous behaviors of wave propagation, as well as tunable manipulation of waves based on different regulation mechanisms: tunable mechanical reconfiguration and materials with multifield coupling. We conclude by outlining future directions in the emerging field.