Abstract

Hemming is a material processing technology widely used in major sectors such as automotive and aerospace industries. As a mechanical joining process, hemming is applied to sheet metal components to build structural assemblies. In conventional hemming methods, dies and presses are used by designing product-specific tooling. In recent years, robot technologies have been integrated into this specific process to benefit from the advantages of flexible manufacturing systems. In this paper, a state-of-the-art review of the hemming process is presented based on a literature review. Since there is no background of collected works and systematic reviews, this work summarizes all the details and key points about hemming. This review fulfills the need for compiled knowledge at the right time because of two main reasons. First, there is no review currently on this issue to enlighten both industry and academia. Second, hemming technologies have been enhanced by the leading industrial companies without any contributions of written sources to the literature. In this work, the evolution of hemming technology is given from past to present. Deformation mechanisms in different hemming methods are presented. Effects of process parameters are discussed in terms of product quality, mechanics of materials, and manufacturing aspects. Lastly, recent developments in hemming technologies are given. Despite the availability of alternative joining methods, hemming remains at the forefront of metal joining processes due to its unrivaled simplicity.

References

1.
Böllinghaus
,
T.
, Byrne, G., Cherpakov, B., Chlebus, E., Cross, C., Denkena, B., Dilthey, U., et al.,
2009
, “
Manufacturing Engineering
,”
Springer Handbook of Mechanical Engineering
,
K.-H.
Grote
and
E. K.
Antonsson
, eds.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
523
785
.
2.
Autotech, 2019, “How Much Does An Accident Diminish a Car's Value?,” Autotech Collision Service, Sewell, NJ, accessed Oct. 13, 2019, https://www.autotechcollision.com/diminished-value-claims/
3.
Gürgen
,
S.
,
2016
, “
Numerical Simulation of Roller Hemming Operation on Convex Edge-Convex Surface Parts
,”
Adv. Eng. Forum
,
15
, pp.
75
84
.10.4028/www.scientific.net/AEF.15.75
4.
Gürgen
,
S.
,
Gökler
,
M. İ.
,
Darendeliler
,
H.
,
Çelikkaya
,
Ç. C.
, and
Erden
,
K.
,
2013
, “Analysis of Roller Hemming Process for a Vehicle Tailgate Closure,”
AIP Conference Proceedings
, Shenyang, China, pp.
367
374
.10.1063/1.4806848
5.
European Aluminium Association,
2015
, “
Mechanical Joining
,”
Aluminium Automotive Manual
, Brussels, Belgium, pp.
1
66
.
6.
Lee
,
K.-H.
,
Ko
,
D.-C.
,
Lee
,
J.-M.
,
Lee
,
C.-J.
,
Lee
,
S.-B.
, and
Kim
,
B.-M.
,
2016
, “
Manufacturing Process of Bezel Frame for Strength-Reinforced TFT LCD Module by Progressive Hemming of SUS304 Stainless Steel Sheet
,”
J. Mech. Sci. Technol.
,
30
(
3
), pp.
1103
1109
.10.1007/s12206-016-0214-6
7.
Jianjun
,
L.
, and
Wenfeng
,
Z.
,
2019
, “
Numerical Simulation of the Roller Hemming Process Based on Pressure-Viscosity Effect
,”
Int. J. Adv. Manuf. Technol.
,
105
(
1–4
), pp.
1023
1039
.10.1007/s00170-019-04237-5
8.
Svensson
,
M.
, and
Mattiasson
,
K.
,
2002
, “
Three-Dimensional Simulation of Hemming With the Explicit FE-Method
,”
J. Mater. Process. Technol.
,
128
(
1–3
), pp.
142
154
.10.1016/S0924-0136(02)00441-7
9.
Li
,
J.
,
Zhu
,
W.
,
Sun
,
H.
, and
Tang
,
G.
,
2022
, “
Multi-Physics Modeling and Simulations on the Curing Process of One-Component Hemming Adhesive Under Temperature Cycle
,”
J. Adhes. Sci. Technol.
, 36(5), pp.
507
530
.10.1080/01694243.2021.1929015
10.
Mortimer
,
J.
,
2004
, “
Adhesive Bonding of Car Body Parts by Industrial Robot
,”
Ind. Robot Int. J
,
31
(
5
), pp.
423
428
.10.1108/01439910410551836
11.
Zhang
,
G.
,
Hao
,
H.
,
Wu
,
X.
,
Hu
,
S. J.
,
Harper
,
K.
, and
Faitel
,
W.
,
2000
, “
An Experimental Investigation of Curved Surface-Straight Edge Hemming
,”
J. Manuf. Process.
,
2
(
4
), pp.
241
246
.10.1016/S1526-6125(00)70025-9
12.
Gürgen
,
S.
,
2019
, “
Numerical Modeling of Roller Hemming Operation on a Straight Edge Part
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
11
), p.
512
.10.1007/s40430-019-2030-2
13.
Gürgen
,
S.
,
2019
, “
A Parametric Investigation of Roller Hemming Operation on a Curved Edge Part
,”
Arch. Civ. Mech. Eng.
,
19
(
1
), pp.
11
19
.10.1016/j.acme.2018.07.009
14.
Gürgen
,
S.
,
2011
, “
Analysis of Roller Hemming Process for a Vehicle Tailgate Closure
,” Master thesis,
Middle East Technical University
, Ankara, Turkey.
15.
Livatyali
,
H.
, and
Larris
,
S. J.
,
2004
, “
Experimental Investigation on Forming Defects in Flat Surface–Convex Edge Hemming: Roll, Recoil and Warp
,”
J. Mater. Process. Technol.
,
153–154
, pp.
913
919
.10.1016/j.jmatprotec.2004.04.425
16.
Lin
,
G.
,
Koç
,
M.
,
Hu
,
J.
, and
Cai
,
W.
,
2004
, “
Three-Dimensinal Numerical Simulations of Curved Edge-Curved Surface Hemming of Aluminum Alloy
,”
ASME
Paper No. IMECE2004-60705.10.1115/IMECE2004-60705
17.
Maoût
,
N. L.
,
Thuillier
,
S.
,
Manach
,
P. Y.
, and
Pauvert
,
O.
,
2008
, “
Numerical Simulation of the Hemming Process—Integration in the Virtual Design of Automotive Parts
,”
Numisheet 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes
,
Interlaken
,
Switzerland
, Sept. 1–5, pp.
1
6
.https://www.researchgate.net/publication/280816845_Numerical_simulation_of_the_hemming_process_-_Integration_in_the_virtual_design_of_automotive_parts
18.
Espinosa
,
R. H.
,
2006
, “Finite Element Simulation of Warm Forming Assisted Sheet Metal Bending,” Ph.D. thesis,
University of Detroit Mercy
, Detroit, MI.
19.
Totten
,
G. E.
, and
MacKenzie
,
D. S.
,
2003
,
Handbook of Aluminum
,
Marcel Dekker
,
Hoboken, NJ
.
20.
Stoudt
,
M. R.
,
Hubbard
,
J. B.
,
Carsley
,
J. E.
, and
Hartfield-Wünsch
,
S. E.
, Jul.
2014
, “
Characterizing the Hemming Performance of Automotive Aluminum Alloys With High-Resolution Topographic Imaging
,”
ASME J. Eng. Mater. Technol.
,
136
(
3
), p.
031001
.10.1115/1.4027093
21.
Maoût
,
N. L.
,
Thuillier
,
S.
, and
Manach
,
P. Y.
,
2009
, “
Aluminum Alloy Damage Evolution for Different Strain Paths – Application to Hemming Process
,”
Eng. Fract. Mech.
,
76
(
9
), pp.
1202
1214
.10.1016/j.engfracmech.2009.01.018
22.
Livatyali
,
H.
,
Laxhuber
,
T.
, and
Altan
,
T.
,
2004
, “
Experimental Investigation of Forming Defects in Flat Surface–Convex Edge Hemming
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
20
27
.10.1016/S0924-0136(03)00840-9
23.
Maoût
,
N. L.
,
Thuillier
,
S.
, and
Manach
,
P. Y.
,
2010
, “
Classical and Roll-Hemming Processes of Pre-Strained Metallic Sheets
,”
Exp. Mech.
,
50
(
7
), pp.
1087
1097
.10.1007/s11340-009-9297-7
24.
Oliveira
,
S. A. G.
, and
Neamtu
,
L.
,
2004
, “
Approaches to the Hemming Process Simulation of an Automobile Tailgate
,”
European Congress on Computational Methods in Applied Sciences and Engineering
, Finland, Vol.
1
, July 24–28, pp.
1
10
.https://www.researchgate.net/publication/242431801_Approaches_to_the_hemming_process_simulation_of_an_automobile_tailgate
25.
Jonkers
,
B.
,
2006
, “
Simulation of the Robot Roller Hemming Process
,” Master thesis,
University of Twente
, Enschede, The Netherlands.
26.
ABB Flexible Automation,
2010
, “Roller Hemming Head: Rolling Ahead of the Rest,”
ABB Flexible Automation
, Zurich, Switzerland.
27.
Coquet
,
J. M.
, and
Noizet
,
A.
,
2017
, “Blade and Method for Crimping Metal Sheets,” Patent No. WO2017144791A1.
28.
Huang
,
Y.-P.
,
Jiang
,
B.-T.
,
Wu
,
C.-H.
, and
Chang
,
J.-Y.
,
2021
, “
Vision-Based Path Guidance to Achieve Dies-Free Roller Hemming Process
,”
Appl. Sci.
,
11
(
12
), p.
5741
.10.3390/app11125741
29.
Bargende
,
M.
,
Reuss
,
H.-C.
, and
Wiedemann
,
J.
,
2014
,
14. Internationales Stuttgarter Symposium: Automobil- Und Motorentechnik
, Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren, eds.,
Springer Vieweg
,
Wiesbaden
.
30.
Kraus
,
J.
,
2009
,
KUKA Robot Hemming System
,
KUKA Automation Company
, Augsburg, Germany.
31.
ABB Flexible Automation,
2000
, “Excellence in Hemming: Lines and Equipment for Automotive Closure Panels,” ABB Flexible Automation, Zurich, Switzerland.
32.
Hönle
,
S.
,
Liewald
,
M.
,
Schmid
,
P.
, and
Sindel
,
M.
,
2014
, “
Experimental Study of Unstretched Fiber Shifting During Hemming Processes for Automotive Aluminum Alloys
,”
14. Internationales Stuttgarter Symposium
,
M.
Bargende
,
H.-C.
Reuss
, and
J.
Wiedemann
, eds.,
Springer Fachmedien Wiesbaden
,
Wiesbaden
, Germany, pp.
215
226
.
33.
Baron
,
J.
, and
Smith
,
B. C.
,
2006
, “Low-Volume Vehicle Production,” Center for Automotive Research, Ann Arbor, MI.
34.
Marciniak
,
Z.
,
Duncan
,
J. L.
, and
Hu
,
S. J.
,
2002
,
Mechanics of Sheet Metal Forming
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
35.
Livatyali
,
H.
, and
Altan
,
T.
,
2001
, “
Prediction and Elimination of Springback in Straight Flanging Using Computer Aided Design Methods
,”
J. Mater. Process. Technol.
,
117
(
1–2
), pp.
262
268
.10.1016/S0924-0136(01)01164-5
36.
Hu
,
X.
,
Zhao
,
Y.
,
Huang
,
S.
,
Li
,
S.
, and
Lin
,
Z.
,
2012
, “
Numerical Analysis of the Roller Hemming Process
,”
Int. J. Adv. Manuf. Technol.
,
62
(
5–8
), pp.
543
550
.10.1007/s00170-011-3822-4
37.
Li
,
S.
,
Hu
,
X.
,
Zhao
,
Y.
,
Lin
,
Z.
, and
Xu
,
N.
,
2011
, “
Cyclic Hardening Behavior of Roller Hemming in the Case of Aluminum Alloy Sheets
,”
Mater. Des.
,
32
(
4
), pp.
2308
2316
.10.1016/j.matdes.2010.09.017
38.
Taub
,
A. I.
,
Krajewski
,
P. E.
,
Luo
,
A. A.
, and
Owens
,
J. N.
,
2007
, “
The Evolution of Technology for Materials Processing Over the Last 50 Years: The Automotive Example
,”
JOM
,
59
(
2
), pp.
48
57
.10.1007/s11837-007-0022-7
39.
Arab
,
N.
, and
Javadimanesh
,
A.
,
2013
, “
Theoretical and Experimental Analysis of Deep Drawing Cylindrical Cup
,”
J. Miner. Mater. Charact. Eng.
,
1
(
6
), pp.
336
342
.10.4236/jmmce.2013.16051
40.
Dao
,
M.
, and
Li
,
M.
,
2001
, “
A Micromechanics Study on Strain-Localization-Induced Fracture Initiation in Bending Using Crystal Plasticity Models
,”
Philos. Mag. A
,
81
(
8
), pp.
1997
2020
.10.1080/01418610108216649
41.
Graf
,
A.
, and
Hosford
,
W.
,
1994
, “
The Influence of Strain-Path Changes on Forming Limit Diagrams of A1 6111 T4
,”
Int. J. Mech. Sci.
,
36
(
10
), pp.
897
910
.10.1016/0020-7403(94)90053-1
42.
Liewald
,
M.
, and
Schleich
,
R.
,
2010
, “
Development of an Anisotropic Failure Criterion for Characterising the Influence of Curvature on Forming Limits of Aluminium Sheet Metal Alloys
,”
Int. J. Mater. Form
,
3
(
S1
), pp.
1175
1178
.10.1007/s12289-010-0982-y
43.
Schleich
,
R.
,
Held
,
C.
,
Sindel
,
M.
, and
Liewald
,
M.
,
2009
, “
Investigation on the Effect of Curvature and Sheet Thickness on Forming Limit Prediction for Aluminium Sheet Metal Alloys
,”
Int. J. Mater. Form
,
2
(
S1
), pp.
411
414
.10.1007/s12289-009-0503-z
44.
Wang
,
N.-M.
, and
Tang
,
S. C.
,
1988
, “
Analysis of Bending Effects in Sheet Forming Operations
,”
Int. J. Numer. Methods Eng.
,
25
(
1
), pp.
253
267
.10.1002/nme.1620250119
46.
Denninger
,
R.
,
Liewald
,
M.
,
Held
,
C.
, and
Sindel
,
M.
,
2011
, “
Investigations on Bendability of Lightweight Materials for Various Load Paths
,”
The 14th International ESAFORM Conference on Material Forming
, Belfast, UK, Apr. 27–29, pp.
1601
1605
.10.1063/1.3589745
47.
Schleich
,
R.
,
Sindel
,
M.
, and
Liewald
,
M.
,
2009
, “
Investigation on the Effect of Curvature on Forming Limit Prediction for Aluminium Sheet Alloys
,”
Int. J. Mater. Form
,
2
(
2
), pp.
69
74
.10.1007/s12289-009-0394-z
48.
Liewald
,
M.
,
Sindel
,
M.
,
Schleich
,
R.
, and
Held
,
C.
,
2008
, “
Beitrag zur Verbesserung der simulativen Absicherung von biegedominierten Umformprozessen im Automobilbau
,”
GRIPS Media
, Stuttgart, Germany.
49.
Lin
,
G.
,
Hu
,
S. J.
, and
Cai
,
W.
,
2009
, “
Evaluation of Formability in Bending/Hemming of Aluminum Alloys Using Plane-Strain Tensile Tests
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051009
.10.1115/1.3123316
50.
Kitting
,
D.
,
Ofenheimer
,
A.
,
Pauli
,
H.
, and
Till
,
E. T.
,
2010
, “
A Phenomenological Concept to Predict Formability in Stretch-Bending Forming Operations
,”
Int. J. Mater. Form
,
3
(
S1
), pp.
1163
1166
.10.1007/s12289-010-0979-6
51.
Liewald
,
M.
, and
Drotleff
,
K.
,
2014
, “
Concept of the Bending Limit Curve
,”
Forming Limit Curve Workshop
, Zurich, Switzerland, Nov. 6–7, pp.
17
22
.
52.
Emmens
,
W. C.
, and
Boogaard
,
A. H.
,
2008
, “
Extended Tensile Testing With Simultaneous Bending
,”
The International Deep Drawing Research Group International Conference
, Olofström, Sweden, June 16–18, pp.
1
12
.
53.
Hu
,
X.
,
Yang
,
H. J.
,
Yang
,
H. G.
, and
Dan
,
W. J.
,
2015
, “
Fracture Behaviour of Aluminium Alloy Sheet Under Roller Hemming Process
,”
Mater. Res. Innov.
,
19
(
sup10
), pp.
S10-299
S10-304
.10.1179/1432891715Z.0000000002175
54.
Hu
,
X.
,
Lin
,
Z. Q.
,
Li
,
S. H.
, and
Zhao
,
Y. X.
,
2010
, “
Fracture Limit Prediction for Roller Hemming of Aluminum Alloy Sheet
,”
Mater. Des.
,
31
(
3
), pp.
1410
1416
.10.1016/j.matdes.2009.08.039
55.
Das
,
I. M.
,
Saxena
,
K. K.
, and
Mukhopadhyay
,
J.
,
2016
, “
Determination of Bending Limit Curves for Aluminium Alloy AA6014-T4: An Experimental Approach
,”
TMS 2016 145th Annual Meeting & Exhibition
,
Springer International Publishing
,
Cham, Switzerland
, pp.
541
547
.10.1007/978-3-319-48254-5_65
56.
Khodayari
,
G.
,
2008
, “
Bending Limit Curve for Rotary Draw Bending of Tubular Components in Automotive Hydroforming Applications
,”
SAE Int. J. Mater. Manuf.
,
1
(
1
), pp.
841
848
.10.4271/2008-01-2762
57.
Wang
,
C.-T.
,
Kinzel
,
G.
, and
Altan
,
T.
,
1995
, “
Failure and Wrinkling Criteria and Mathematical Modeling of Shrink and Stretch Flanging Operations in Sheet-Metal Forming
,”
J. Mater. Process. Technol.
,
53
(
3–4
), pp.
759
780
.10.1016/0924-0136(94)01766-T
58.
Wang
,
C.-T.
,
Kinzel
,
G.
, and
Altan
,
T.
,
1994
, “
Wrinkling Criterion for an Anisotropic Shell With Compound Curvatures in Sheet Forming
,”
Int. J. Mech. Sci.
,
36
(
10
), pp.
945
960
.10.1016/0020-7403(94)90056-6
59.
Wang
,
C.-T.
,
Kinzel
,
G. L.
, and
Altan
,
T.
,
1993
, “
Process Simulation and Springback Control in Plane Strain Sheet Bending
,”
SAE
Paper No. 930280.10.4271/930280
60.
Saxena
,
K. K.
,
Das
,
I. M.
, and
Mukhopadhyay
,
J.
,
2017
, “
Evaluation of Bending Limit Curves of Aluminium Alloy AA6014-T4 and Dual Phase Steel DP600 at Ambient Temperature
,”
Int. J. Mater. Form.
,
10
(
2
), pp.
221
231
.10.1007/s12289-015-1271-6
61.
Panich
,
S.
,
2017
, “
Bending Limit Curves in Sheet Metal Bending Evaluation
,”
Key Eng. Mater.
,
751
, pp.
180
185
.10.4028/www.scientific.net/KEM.751.180
62.
Thuillier
,
S.
, May
2014
, “
Influence of a Tensile Pre-Strain on Bending of Aluminium Alloy
,”
Key Eng. Mater.
,
611–612
, pp.
1742
1749
.10.4028/www.scientific.net/KEM.611-612.1742
63.
Zubeil
,
M.
,
Roll
,
K.
, and
Merklein
,
M.
,
2012
, “
Extension of a Failure Criterion for Hemming Applications in the FEM Simulation
,”
Key Eng. Mater.
,
504–506
, pp.
765
770
.10.4028/www.scientific.net/KEM.504-506.765
64.
Lange
,
C.
,
2004
, “Experimental and Numerical Simulation of the Hemming Process of an Aluminum Sheet,”
AIP Publishing
, France, pp.
1001
1006
.10.1063/1.1766658
65.
Sert
,
A.
,
Gürgen
,
S.
,
Çelik
,
O. N.
, and
Kuşhan
,
M. C.
,
2017
, “
Effect of Heat Treatment on the Bending Behavior of Aluminum Alloy Tubes
,”
J. Mech. Sci. Technol.
,
31
(
11
), pp.
5273
5278
.10.1007/s12206-017-1020-5
66.
Swillo
,
S. J.
,
Iyer
,
K.
, and
Hu
,
S. J.
,
2006
, “
Angled Line Method for Measuring Continuously Distributed Strain in Sheet Bending
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
651
658
.10.1115/1.2193544
67.
Swillo
,
S.
,
Kocanda
,
A.
,
Czyzewski
,
P.
, and
Kowalczyk
,
P.
,
2011
, “
Hemming Process Evaluation by Using Computer Aided Measurement System and Numerical Analysis
,”
10th International Conference on Technology of Plasticity
, Aachen, Germany, Sept. 25–30, pp.
633
637
.https://www.researchgate.net/publication/228805525_Hemming_Process_Evaluation_by_Using_Computer_Aided_Measurement_System_and_Numerical_Analysis
68.
Swillo
,
S.
,
2013
, “
Experimental Apparatus for Sheet Metal Hemming Analysis
,”
Comput. Methods Mater. Sci.
,
13
(
2
), pp.
326
332
.https://www.infona.pl/resource/bwmeta1.element.baztech-bca76081-bb65-4819-9971-edc7cd18cd5b/tab/summary
69.
Dewang
,
Y.
, and
Sharma
,
V.
,
2020
, “
A Study on Sheet Metal Hemming Process
,”
Mater. Today Proc.
,
27
, pp.
2091
2095
.10.1016/j.matpr.2019.09.074
70.
Davies
,
G.
,
2003
,
Materials for Automobile Bodies
,
Butterworth-Heinemann
,
Boston, MA
.
71.
Muderrisoglu
,
A.
,
Murata
,
M.
,
Ahmetoglu
,
M. A.
,
Kinzel
,
G.
, and
Altan
,
T.
, May
1996
, “
Bending, Flanging, and Hemming of Aluminum Sheet—An Experimental Study
,”
J. Mater. Process. Technol.
,
59
(
1–2
), pp.
10
17
.10.1016/0924-0136(96)02281-9
72.
Livatyali
,
H.
,
Müderrisoğlu
,
A.
,
Ahmetoğlu
,
M. A.
,
Akgerman
,
N.
,
Kinzel
,
G. L.
, and
Altan
,
T.
,
2000
, “
Improvement of Hem Quality by Optimizing Flanging and Pre-Hemming Operations Using Computer Aided Die Design
,”
J. Mater. Process. Technol.
,
98
(
1
), pp.
41
52
.10.1016/S0924-0136(99)00304-0
73.
Golovashchenko
,
S. F.
,
2005
, “
Sharp Flanging and Flat Hemming of Aluminum Exterior Body Panels
,”
J. Mater. Eng. Perform.
,
14
(
4
), pp.
508
515
.10.1361/105994905X56142
74.
Lin
,
G.
,
Li
,
J.
,
Hu
,
S. J.
, and
Cai
,
W.
,
2007
, “
A Computational Response Surface Study of Three-Dimensional Aluminum Hemming Using Solid-to-Shell Mapping
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
360
368
.10.1115/1.2515430
75.
Shang
,
J.
,
Wilkerson
,
L.
, and
Hatkevich
,
S.
,
2011
, “
Hemming of Aluminum Alloy Sheets Using Electromagnetic Forming
,”
J. Mater. Eng. Perform.
,
20
(
8
), pp.
1370
1377
.10.1007/s11665-011-9988-y
76.
Hamedon
,
Z.
,
Mori
,
K.
, and
Abe
,
Y.
,
2014
, “
Hemming for Joining High Strength Steel Sheets
,”
Procedia Eng.
,
81
, pp.
2074
2079
.10.1016/j.proeng.2014.10.288
77.
Abe
,
Y.
,
Mori
,
K.
, and
Nakagawa
,
K.
,
2017
, “
Assembly of Ultra-High Strength Steel Hollow Part by Hemming Using Pre-Bent Inner Sheet
,”
Procedia Eng.
,
207
, pp.
974
979
.10.1016/j.proeng.2017.10.861
78.
Lu
,
H.
,
Zhang
,
J.
,
Tian
,
N.
,
Song
,
X.
,
Ma
,
M.
, and
Lu
,
G.
,
2018
, “
Recycle-Friendly Aluminum Alloy Sheets for Automotive Applications Based on Hemming
,”
Autom. Innov.
,
1
(
1
), pp.
70
75
.10.1007/s42154-018-0012-1
79.
Babalo
,
V.
,
Soltanpour
,
M.
, and
Fazli
,
A.
,
2019
, “
High Speed Circular Hemming; a Novel Joining Process for Thin and Low-Ductile Sheets
,”
Thin-Walled Struct.
,
142
, pp.
98
115
.10.1016/j.tws.2019.04.059
80.
Wessel
,
A.
,
Butz
,
A.
,
Willmann
,
T.
, and
Bischoff
,
M.
,
2020
, “
Effect of Different Anisotropic 3D Yield Functions on a Roller Hemming Simulation
,”
Procedia Manuf.
,
47
, pp.
1358
1365
.10.1016/j.promfg.2020.04.264
81.
Davidkov
,
A.
,
Petrov
,
R. H.
,
De Smet
,
P.
,
Schepers
,
B.
, and
Kestens
,
L. A. I.
,
2011
, “
Microstructure Controlled Bending Response in AA6016 Al Alloys
,”
Mater. Sci. Eng. A
,
528
(
22–23
), pp.
7068
7076
.10.1016/j.msea.2011.05.055
82.
Thuillier
,
S.
,
Maoût
,
N. L.
, and
Manach
,
P. Y.
,
2011
, “
Influence of Ductile Damage on the Bending Behaviour of Aluminium Alloy Thin Sheets
,”
Mater. Des.
,
32
(
4
), pp.
2049
2057
.10.1016/j.matdes.2010.11.050
83.
Davidkov
,
A.
,
Petrov
,
R. H.
,
Bliznuk
,
V.
,
Ratchev
,
P.
,
De Smet
,
P.
,
Schepers
,
B.
, and
Kestens
,
L.
,
2011
, “
Microstructure and Hemming Properties of AA6016 Aluminum Alloy Sheets
,”
Key Eng. Mater.
,
465
, pp.
451
454
.10.4028/www.scientific.net/KEM.465.451
84.
Gu
,
Z.
,
Wang
,
G.
, and
Yu
,
G.
,
2020
, “
Investigation on Fracture of a 6014-T4 Aluminum Alloy Sheet in the Flanging and Hemming Process Based on Numerical and Experimental Methods
,”
Metals
,
10
(
1
), p.
81
.10.3390/met10010081
85.
Martinsen
,
F. A.
,
Ehlers
,
F. J. H.
,
Torsæter
,
M.
, and
Holmestad
,
R.
,
2012
, “
Reversal of the Negative Natural Aging Effect in Al–Mg–Si Alloys
,”
Acta Mater.
,
60
(
17
), pp.
6091
6101
.10.1016/j.actamat.2012.07.047
86.
Wang
,
Q.
,
Dong
,
X.
,
Li
,
H.
, and
Zhang
,
H.
,
2011
, “
Analytical Model for Straight Hemming Based on Minimum Energy Method
,”
J. Zhejiang Univ. Sci. A
,
12
(
7
), pp.
532
542
.10.1631/jzus.A1000458
87.
Liewald
,
M.
,
Hönle
,
S.
, and
Sindel
,
M.
,
2016
, “
Surface Roughening of an Aluminum 6016 Alloy During Bending and Hemming
,”
Int. J. Mater. Form
,
9
(
2
), pp.
203
213
.10.1007/s12289-015-1223-1
88.
Kaiser
,
C.
,
Roll
,
K.
, and
Volk
,
W.
,
2017
, “
Increasing the Efficiency of Designing Hemming Processes by Using an Element-Based Metamodel Approach
,”
J. Phys. Conf. Ser.
,
896
, p.
012041
.10.1088/1742-6596/896/1/012041
89.
Lin
,
J. G.
,
Wang
,
E. W.
, and
Zhou
,
G. R.
,
2014
, “
Hemming Process Simulation of Table-Top Hemming Machine
,”
Appl. Mech. Mater.
,
644–650
, pp.
2177
2180
.10.4028/www.scientific.net/AMM.644-650.2177
90.
Zhang
,
G.
,
Wu
,
X.
, and
Hu
,
S. J.
,
2001
, “
A Study on Fundamental Mechanisms of Warp and Recoil in Hemming
,”
J. Eng. Mater. Technol.
,
123
(
4
), pp.
436
441
.10.1115/1.1396348
91.
Yun
,
S. Z.
,
Liu
,
Y.
,
Jian
,
Y. S.
,
Yang
,
P. C.
, and
Bing
,
W. A.
,
2011
, “
Warp Phenomenon Analysis in Hemming Process of Autobody Panel
,”
Appl. Mech. Mater.
,
66–68
, pp.
545
550
.10.4028/www.scientific.net/AMM.66-68.545
92.
Lin
,
G.
,
Iyer
,
K.
,
Hu
,
S. J.
,
Cai
,
W.
, and
Marin
,
S. P.
,
2005
, “
A Computational Design-of-Experiments Study of Hemming Processes for Automotive Aluminium Alloys
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
219
(
10
), pp.
711
722
.10.1243/095440505X32661
93.
Wang
,
G.
,
Gu
,
Z.
,
Xu
,
H.
, and
Yu
,
G.
,
2020
, “
Numerical Analysis and Experimental Investigation of Surface Defects in Die Hemming Process
,”
Int. J. Mater. Form.
,
13
(
1
), pp.
91
102
.10.1007/s12289-019-01470-x
94.
The Aluminum Association
,
1998
,
Automotive Aluminum Crash Energy Management Manual
,
The Aluminum Association, Publication AT5
, Arlington County, VA.
95.
Hamedon
,
Z.
,
Mori
,
K. I.
, and
Abe
,
Y.
,
2015
, “
Fatigue Strength of High Strength Steel Sheets Joined by Hemming Process
,”
Appl. Mech. Mater.
,
773–774
, pp.
282
286
.10.4028/www.scientific.net/AMM.773-774.282
96.
Wanintradul
,
C.
,
Golovashchenko
,
S. F.
,
Gillard
,
A. J.
, and
Smith
,
L. M.
,
2014
, “
Hemming Process With Counteraction Force to Prevent Creepage
,”
J. Manuf. Process.
,
16
(
3
), pp.
379
390
.10.1016/j.jmapro.2014.04.003
97.
Bagheri
,
F.
,
Madoliat
,
R.
,
Sedighi
,
M.
, and
Asgari
,
A.
,
2019
, “
Rubber-Assisted Pre-Hemming Process: A Parametric Study
,”
J. Manuf. Process.
,
38
, pp.
328
337
.10.1016/j.jmapro.2019.01.031
98.
Sun
,
Y. D.
, and
Wu
,
H. H.
,
2012
, “
A Study on the Dimension of Vehicle Closure Hemming Components
,”
Adv. Mater. Res.
,
482–484
, pp.
895
899
.10.4028/www.scientific.net/AMR.482-484.895
99.
Sofuoğlu
,
M. A.
,
Gürgen
,
S.
,
Çakır
,
F. H.
, and
Orak
,
S.
,
2017
, “
Springback Behavior of AA6082T6 Tubes in Three-Point Bending Operation
,”
Procedia Eng.
,
182
, pp.
658
664
.10.1016/j.proeng.2017.03.176
100.
Maoût
,
N. L.
,
Thuillier
,
S.
, and
Manach
,
P. Y.
,
2010
, “
Drawing, Flanging and Hemming of Metallic Thin Sheets: A Multi-Step Process
,”
Mater. Des.
,
31
(
6
), pp.
2725
2736
.10.1016/j.matdes.2010.01.030
101.
Thuillier
,
S.
,
Maoût
,
N. L.
,
Manach
,
P. Y.
, and
Debois
,
D.
,
2008
, “
Numerical Simulation of the Roll Hemming Process
,”
J. Mater. Process. Technol.
,
198
(
1–3
), pp.
226
233
.10.1016/j.jmatprotec.2007.07.004
102.
Manach
,
P. Y.
,
Maoût
,
N. L.
, and
Thuillier
,
S.
,
2010
, “
A Multi-Step Assembly Process: Drawing, Flanging and Hemming of Metallic Sheets
,”
EPJ Web Conf.
,
6
, p.
08004
.10.1051/epjconf/20100608004
103.
Maoût
,
N. L.
,
Manach
,
P. Y.
, and
Thuillier
,
S.
,
2012
, “
Influence of Prestrain on the Numerical Simulation of the Roller Hemming Process
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
450
457
.10.1016/j.jmatprotec.2011.10.008
104.
Jeong
,
C.
,
Oya
,
T.
, and
Yanagimoto
,
J.
,
2013
, “
Analysis of Fracture Behavior and Stress–Strain Distribution of Martensite/Austenite Multilayered Metallic Sheet
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
614
620
.10.1016/j.jmatprotec.2012.10.017
105.
Oya
,
T.
,
Tiesler
,
N.
,
Kawanishi
,
S.
,
Yanagimoto
,
J.
, and
Koseki
,
T.
,
2010
, “
Experimental and Numerical Analysis of Multilayered Steel Sheets Upon Bending
,”
J. Mater. Process. Technol.
,
210
(
14
), pp.
1926
1933
.10.1016/j.jmatprotec.2010.07.003
106.
Liewald
,
M.
,
Hofmann
,
D.
, and
Hönle
,
S.
,
2016
,
Hemming of Layered Composites Dedicated to Stiffness Increase
,
Verlag Meisenbach GmbH
, Stuttgart, Germany.
107.
Carsley
,
J.
, and
Kim
,
S.
,
2007
, “
Warm Hemming of Magnesium Sheet
,”
J. Mater. Eng. Perform.
,
16
(
3
), pp.
331
338
.10.1007/s11665-007-9053-z
108.
Levinson
,
A.
,
Mishra
,
R. K.
,
Doherty
,
R. D.
, and
Kalidindi
,
S. R.
,
2012
, “
Microstructure Evolution During Roller Hemming of AZ31B Magnesium Sheet
,”
Metall. Mater. Trans. A
,
43
(
10
), pp.
3824
3833
.10.1007/s11661-012-1184-7
109.
Xie
,
H.
,
Liu
,
K.
,
Wang
,
Q.
,
Peng
,
F.
,
Fang
,
L.
,
Dong
,
X.
, and
Wang
,
J.
,
2016
, “
Experimental Exploration of Electrical Pulse-Assisted Roller Hemming of AZ31B Magnesium Alloy Sheet
,”
J. Shanghai Jiaotong Univ. Sci.
,
21
(
5
), pp.
557
561
.10.1007/s12204-016-1762-8
110.
Kleeh
,
T.
,
Merklein
,
M.
, and
Roll
,
K.
,
2011
, “
Modeling Laser Heating for Roller Hemming Applications
,”
Key Eng. Mater.
,
473
, pp.
501
508
.10.4028/www.scientific.net/KEM.473.501
111.
Kleeh
,
T.
,
Merklein
,
M.
, and
Roll
,
K.
,
2012
, “
Laser Heat Treatment Effects on Roller Hemming in Aluminum Alloys
,”
Key Eng. Mater.
,
504–506
, pp.
711
716
.10.4028/www.scientific.net/KEM.504-506.711
112.
Woizeschke
,
P.
,
Heinrich
,
L.
, and
Eichner
,
P.
,
2018
, “
Laser Edge Forming to Increase the Bending Radius in Hemming
,”
MATEC Web Conf.
,
190
, p.
02002
.10.1051/matecconf/201819002002
113.
Jimbert
,
P.
,
Eguia
,
I.
,
Perez
,
I.
,
Gutierrez
,
M. A.
, and
Hurtado
,
I.
, May
2011
, “
Analysis and Comparative Study of Factors affecting quality in the Hemming of 6016T4AA Performed by Means of Electromagnetic Forming and Process Characterization
,”
J. Mater. Process. Technol.
,
211
(
5
), pp.
916
924
.10.1016/j.jmatprotec.2010.08.022
114.
Anderson
,
R.
, Brännström, P., Daehn, S., Eguia, I., and Gonzalez, B.,
2008
, “
Flanging and Hemming of Auto Body Panels Using the Electro Magnetic Forming Technology
,”
The Third International Conference on High Speed Forming
,
Dortmund, Germany
, Mar. 11–12, pp.
163
172
.10.17877/DE290R-14136
115.
Rajak
,
A.
, and
Kore
,
S.
,
2017
, “
Electromagnetic Hemming of Aluminum Sheets Using FEM
,”
Advances in Intelligent Systems Research
, Vol.
137
, Raigad, India, Dec. 26–27, pp.
77
82
.https://www.atlantis-press.com/article/25871594.pdf
You do not currently have access to this content.