Abstract
Acoustic/elastic metasurfaces as a kind of two-dimensional metamaterials are of subwavelength thickness and show remarkable ability of acoustic/elastic wave manipulation. They have potential applications in various fields such as acoustic imaging, communications, cloaking, camouflage, vibration/noise control, energy harvesting, and nondestructive testing. In this review, we mainly summarize recent developments in acoustic/elastic phase gradient metasurfaces, including design principles, design of functional elements, wave field manipulation with applications, design of tunable metasurfaces, as well as the emerging digital coding metasurfaces. At last, we outline the future research directions in this field.
Issue Section:
Review Articles
References
1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
, 2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,” ASME Appl. Mech. Rev.
,
66
(4
), p. 040802
.10.1115/1.40269112.
Wang
,
Y. F.
,
Wang
,
Y. Z.
,
Wu
,
B.
,
Chen
,
W. Q.
, and
Wang
,
Y. S.
, 2020
, “
Tunable and Active Phononic Crystals and Metamaterials
,” ASME Appl. Mech. Rev.
,
72
(4
), p. 040801
.10.1115/1.40462223.
Liao
,
G. X.
,
Luan
,
C. C.
,
Wang
,
Z. W.
,
Liu
,
J. P.
,
Yao
,
X. H.
, and
Fu
,
J. Z.
, 2021
, “
Acoustic Metamaterials a Review of Theories, Structures, Fabrication Approaches, and Applications
,” Adv. Mater. Technol.
,
6
(5
), p. 2000787
.10.1002/admt.2020007874.
Sigalas
,
M. M.
, and
Economou
,
E. N.
, 1992
, “
Elastic and Acoustic Wave Band Structure
,” J. Sound Vib.
,
158
(2
), pp. 377
–382
.10.1016/0022-460X(92)90059-75.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
, 1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,” Phys. Rev. Lett.
,
71
(13
), pp. 2022
–2025
.10.1103/PhysRevLett.71.20226.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Z. Z.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
, 2000
, “
Locally Resonant Sonic Materials
,” Science
,
289
(5485
), pp. 1734
–1736
.10.1126/science.289.5485.17347.
Assouar
,
B.
,
Liang
,
B.
,
Wu
,
Y.
,
Li
,
Y.
,
Cheng
,
J. C.
, and
Jing
,
Y.
, 2018
, “
Acoustic Metasurfaces
,” Nat. Rev. Mater.
,
3
(12
), pp. 460
–472
.10.1038/s41578-018-0061-48.
Liang
,
B.
,
Cheng
,
J. C.
, and
Qiu
,
C. W.
, 2018
, “
Wavefront Manipulation by Acoustic Metasurfaces: From Physics and Applications
,” Nanophotonics
,
7
(6
), pp. 1191
–1205
.10.1515/nanoph-2017-01229.
Zeng
,
Y.
,
Cao
,
L. Y.
,
Zhu
,
Y. F.
,
Wang
,
Y. F.
,
Du
,
Q. J.
,
Wang
,
Y. S.
, and
Assouar
,
B.
, 2021
, “
Coupling the First and Second Attenuation Zones in Seismic Metasurface
,” Appl. Phys. Lett.
,
119
(1
), p. 013501
.10.1063/5.005460610.
Yuan
,
S. M.
,
Ma
,
T. X.
,
Chen
,
A. L.
, and
Wang
,
Y. S.
, 2018
, “
Liquid-Assisted Tunable Metasurface for Simultaneous Manipulation of Surface Elastic and Acoustic Waves
,” AIP Adv.
,
8
(3
), p. 035026
.10.1063/1.501119411.
Liu
,
T.
,
Chen
,
F.
,
Liang
,
S. J.
,
Gao
,
H.
, and
Zhu
,
J.
, 2019
, “
Subwavelength Sound Focusing and Imaging Via Gradient Metasurface-Enabled Spoof Surface Acoustic Wave Modulation
,” Phys. Rev. Appl.
,
11
, p. 034061
.10.1103/PhysRevApplied.11.03406112.
Quan
,
L.
, and
Alù
,
A.
, 2019
, “
Hyperbolic Sound Propagation Over Nonlocal Acoustic Metasurfaces
,” Phys. Rev. Lett.
,
123
(24
), p. 244303
.10.1103/PhysRevLett.123.24430313.
Yu
,
N. F.
,
Genevet
,
P.
,
Kats
,
M. A.
,
Aieta
,
F.
,
Tetienne
,
J. P.
,
Capasso
,
F.
, and
Gaburro
,
Z.
, 2011
, “
Light Propagation With Phase Discontinuities: Generalized Laws of Reflection and Refraction
,” Science
,
334
(6054
), pp. 333
–337
.10.1126/science.121071314.
Chen
,
H.-T.
,
Taylor
,
A. J.
, and
Yu
,
N.
, 2016
, “
A Review of Metasurfaces: Physics and Applications
,” Rep. Prog. Phys.
,
79
(7
), p. 076401
.10.1088/0034-4885/79/7/07640115.
Li
,
Y.
,
Liang
,
B.
,
Gu
,
Z. M.
,
Zou
,
X. Y.
, and
Cheng
,
J. C.
, 2013
, “
Reflected Wavefront Manipulation Based on Ultrathin Planar Acoustic Metasurfaces
,” Sci. Rep.
,
3
, p. 2546
.10.1038/srep0254616.
Xie
,
Y. B.
,
Wang
,
W. Q.
,
Chen
,
H. Y.
,
Konneker
,
A.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
, 2014
, “
Wavefront Modulation and Subwavelength Diffractive Acoustics With an Acoustic Metasurface
,” Nat. Commun.
,
5
, p. 5553
.10.1038/ncomms655317.
Díaz-Rubio
,
A.
, and
Tretyakov
,
S. A.
, 2017
, “
Acoustic Metasurfaces for Scattering-Free Anomalous Reflection and Refraction
,” Phys. Rev. B
,
96
(12
), p. 125409
.10.1103/PhysRevB.96.12540918.
Zhao
,
S. D.
,
Chen
,
A. L.
,
Wang
,
Y. S.
, and
Zhang
,
C.
, 2018
, “
Continuously Tunable Acoustic Metasurface for Transmitted Wavefront Modulation
,” Phys. Rev. Appl.
,
10
(5
), p. 054066
.10.1103/PhysRevApplied.10.05406619.
Chen
,
X.
,
Liu
,
P.
,
Hou
,
Z. W.
, and
Pei
,
Y. M.
, 2017
, “
Magnetic-Control Multifunctional Acoustic Metasurface for Reflected Wave Manipulation at Deep Subwavelength Scale
,” Sci. Rep.
,
7
(1
), p. 9050
.10.1038/s41598-017-09652-w20.
Liu
,
P.
,
Chen
,
X.
,
Xu
,
W. D.
, and
Pei
,
Y. M.
, 2020
, “
Magnetically Controlled Multifunctional Membrane Acoustic Metasurface
,” J. Appl. Phys.
,
127
(18
), p. 185104
.10.1063/1.514528921.
Chen
,
Y. Y.
,
Li
,
X. P.
,
Nassar
,
H.
,
Hu
,
G. K.
, and
Huang
,
G. L.
, 2018
, “
A Programmable Metasurface for Real Time Control of Broadband Elastic Rays
,” Smart Mater. Struct.
,
27
(11
), p. 115011
.10.1088/1361-665X/aae27b22.
Yuan
,
S. M.
,
Chen
,
A. L.
, and
Wang
,
Y. S.
, 2020
, “
Switchable Multifunctional Fish-Bone Elastic Metasurface for Transmitted Flexural Wave Modulation
,” J. Sound Vib.
,
470
, p. 115168
.10.1016/j.jsv.2019.11516823.
Zuo
,
S. Y.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2019
, “
Tunable Perfect Negative Reflection Based on an Acoustic Coding Metasurface
,” Appl. Phys. Lett.
,
114
(20
), p. 203505
.10.1063/1.509370024.
He
,
Q.
,
Sun
,
S. L.
, and
Zhou
,
L.
, 2019
, “
Tunable/Reconfigurable Metasurfaces: Physics and Applications
,” Research
,
2019
, pp. 1
–16
.10.34133/2019/184927225.
Luo
,
S. S.
,
Hao
,
J. J.
,
Ye
,
F. J.
,
Li
,
J. X.
,
Ruan
,
Y.
,
Cui
,
H. Y.
,
Liu
,
W. J.
, and
Chen
,
L.
, 2021
, “
Evolution of the Electromagnetic Manipulation: From Tunable to Programmable and Intelligent Metasurfaces
,” Micromachines
,
12
(8
), p. 988
.10.3390/mi1208098826.
Zahra
,
S.
,
Ma
,
L.
,
Wang
,
W. J.
,
Li
,
J.
,
Chen
,
D. X.
,
Liu
,
Y. F.
,
Zhou
,
Y. D.
,
Li
,
N.
,
Huang
,
Y. J.
, and
Wen
,
G. J.
, 2021
, “
Electromagnetic Metasurfaces and Reconfigurable Metasurfaces: A Review
,” Front. Phys.
,
8
, p. 593411
.10.3389/fphy.2020.59341127.
Xie
,
B. Y.
,
Tang
,
K.
,
Cheng
,
H.
,
Liu
,
Z. Y.
,
Chen
,
S. Q.
, and
Tian
,
J. G.
, 2017
, “
Coding Acoustic Metasurfaces
,” Adv. Mater.
,
29
(6
), p. 1603507
.10.1002/adma.20160350728.
Aieta
,
F.
,
Genevet
,
P.
,
Yu
,
N.
,
Kats
,
M. A.
,
Gaburro
,
Z.
, and
Capasso
,
F.
, 2012
, “
Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces With Phase Discontinuities
,” Nano Lett.
,
12
(3
), pp. 1702
–1706
.10.1021/nl300204s29.
Aieta
,
F.
,
Kabiri
,
A.
,
Genevet
,
P.
,
Yu
,
N.
,
Kats
,
M. A.
,
Gaburro
,
Z.
, and
Capasso
,
F.
, 2012
, “
Reflection and Refraction of Light From Metasurfaces With Phase Discontinuities
,” J. Nanophotonics
,
6
(1
), p. 063532
.10.1117/1.JNP.6.06353230.
Chen
,
A. L.
,
Tang
,
Q. Y.
,
Zhao
,
S. D.
, and
Wang
,
Y. S.
, 2020
, “
Multifunction Switching by a Flat Structurally Tunable Acoustic Metasurface for Transmitted Waves
,” Sci. China-Phys. Mech. Astron.
,
63
(4
), p. 244611
.10.1007/s11433-019-1498-231.
Esfahlani
,
H.
,
Karkar
,
S.
,
Lissek
,
H.
, and
Mosig
,
J. R.
, 2016
, “
Acoustic Carpet Cloak Based on an Ultrathin Metasurface
,” Phys. Rev. B
,
94
(1
), p. 014302
.10.1103/PhysRevB.94.01430232.
Li
,
X. S.
,
Wang
,
Y. F.
,
Chen
,
A. L.
, and
Wang
,
Y. S.
, 2019
, “
Modulation of Out-of-Plane Reflected Waves by Using Acoustic Metasurfaces With Tapered Corrugated Holes
,” Sci. Rep.
,
9
(1
), p. 15856
.10.1038/s41598-019-52441-w33.
Li
,
X. S.
,
Wang
,
Y. F.
,
Chen
,
A. L.
, and
Wang
,
Y. S.
, 2020
, “
An Arbitrarily Curved Acoustic Metasurface for Three-Dimensional Reflected Wave-Front Modulation
,” J. Phys. D Appl. Phys.
,
53
(19
), p. 195301
.10.1088/1361-6463/ab732734.
Fan
,
S. W.
,
Zhao
,
S. D.
,
Cao
,
L. Y.
,
Zhu
,
Y. F.
,
Chen
,
A. L.
,
Wang
,
Y. F.
,
Donda
,
K.
,
Wang
,
Y. S.
, and
Assouar
,
B.
, 2020
, “
Reconfigurable Curved Metasurface for Acoustic Cloaking and Illusion
,” Phys. Rev. B
,
101
(2
), p. 024104
.10.1103/PhysRevB.101.02410435.
Tang
,
K.
,
Qiu
,
C.
,
Ke
,
M. Z.
,
Lu
,
J.
,
Ye
,
Y.
, and
Liu
,
Z. Y.
, 2014
, “
Anomalous Refraction of Airborne Sound Through Ultrathin Metasurfaces
,” Sci. Rep.
,
4
, p. 6517
.10.1038/srep0651736.
Cao
,
L. Y.
,
Yang
,
Z. C.
, and
Xu
,
Y. L.
, 2018
, “
Steering Elastic SH Waves in an Anomalous Way by Metasurface
,” J. Sound Vib.
,
418
, pp. 1
–14
.10.1016/j.jsv.2017.12.03237.
Wang
,
W. Q.
,
Xie
,
Y. B.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
, 2016
, “
Subwavelength Diffractive Acoustics and Wavefront Manipulation With a Reflective Acoustic Metasurface
,” J. Appl. Phys.
,
120
(19
), p. 195103
.10.1063/1.496773838.
Hou
,
Z. L.
,
Fang
,
X. S.
,
Li
,
Y.
, and
Assouar
,
B.
, 2019
, “
Highly Efficient Acoustic Metagrating With Strongly Coupled Surface Grooves
,” Phys. Rev. Appl.
,
12
, p. 034021
.10.1103/PhysRevApplied.12.03402139.
Fang
,
Y.
,
Zhang
,
X.
, and
Zhou
,
J.
, 2017
, “
Sound Transmission Through an Acoustic Porous Metasurface With Periodic Structures
,” Appl. Phys. Lett.
,
110
(17
), p. 171904
.10.1063/1.498263340.
Zhou
,
H. T.
,
Fu
,
W. X.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
, 2021
, “
High-Efficiency Ultrathin Nonlocal Waterborne Acoustic Metasurface
,” Phys. Rev. Appl.
,
15
, p. 044046
.10.1103/PhysRevApplied.15.04404641.
Chiang
,
Y. K.
,
Quan
,
L.
,
Peng
,
Y.
,
Sepehrirahnama
,
S.
,
Oberst
,
S.
,
Alù
,
A.
, and
Powell
,
D.
, 2021
, “
Scalable Metagrating for Efficient Ultrasonic Focusing
,” Phys. Rev. Appl.
,
16
, p. 064014
.10.1103/PhysRevApplied.16.06401442.
Bernard
,
S.
,
Chikh-Bled
,
F.
,
Kourchi
,
H.
,
Chati
,
F.
, and
Léon
,
F.
, 2022
, “
Broadband Negative Reflection of Underwater Acoustic Waves From a Simple Metagrating: Modeling and Experiment
,” Phys. Rev. Appl.
,
17
, p. 024059
.10.1103/PhysRevApplied.17.02405943.
Zhao
,
J. J.
,
Li
,
B. W.
,
Chen
,
Z. N.
, and
Qiu
,
C. W.
, 2013
, “
Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection
,” Sci. Rep.
,
3
, p. 2537
.10.1038/srep0253744.
Zhao
,
J. J.
,
Li
,
B. W.
,
Chen
,
Z. N.
, and
Qiu
,
C. W.
, 2013
, “
Redirection of Sound Waves Using Acoustic Metasurface
,” Appl. Phys. Lett.
,
103
(15
), p. 151604
.10.1063/1.482475845.
Díaz-Rubio
,
A.
,
Asadchy
,
V. S.
,
Elsakka
,
A.
, and
Tretyakov
,
S. A.
, 2017
, “
From the Generalized Reflection Law to the Realization of Perfect Anomalous Reflectors
,” Sci. Adv.
,
3
(8
), p. e1602714
.10.1126/sciadv.160271446.
Asadchy
,
V. S.
,
Albooyeh
,
M.
,
Tcvetkova
,
S. N.
,
Díaz-Rubio
,
A.
,
Ra'di
,
Y.
, and
Tretyakov
,
S. A.
, 2016
, “
Perfect Control of Reflection and Refraction Using Spatially Dispersive Metasurfaces
,” Phys. Rev. B
,
94
(7
), p. 075142
.10.1103/PhysRevB.94.07514247.
Zhu
,
X. F.
, and
Lau
,
S. K.
, 2019
, “
Reflected Wave Manipulation Via Acoustic Metamaterials With Decoupled Amplitude and Phase
,” Appl. Phys. A
,
125
(6
), p. 392
.10.1007/s00339-019-2687-548.
Díaz-Rubio
,
A.
,
Li
,
J. F.
,
Shen
,
C.
,
Cummer
,
S. A.
, and
Tretyakov
,
S. A.
, 2019
, “
Power Flow-Conformal Metamirrors for Engineering Wave Reflections
,” Sci. Adv.
,
5
(2
), p. eaau7288
.10.1126/sciadv.aau728849.
Quan
,
L.
, and
Alù
,
A.
, 2019
, “
Passive Acoustic Metasurface With Unitary Reflection Based on Nonlocality
,” Phys. Rev. Appl.
,
11
, p. 054077
.10.1103/PhysRevApplied.11.05407750.
Li
,
J. F.
,
Shen
,
C.
,
Díaz-Rubio
,
A.
,
Tretyakov
,
S. A.
, and
Cummer
,
S. A.
, 2018
, “
Systematic Design and Experimental Demonstration of Bianisotropic Metasurfaces for Scattering-Free Manipulation of Acoustic Wavefronts
,” Nat. Commun.
,
9
(1
), p. 1342
.10.1038/s41467-018-03778-951.
Peng
,
X. Y.
,
Li
,
J. F.
,
Shen
,
C.
, and
Cummer
,
S. A.
, 2021
, “
Efficient Scattering-Free Wavefront Transformation With Power Flow Conformal Bianisotropic Acoustic Metasurfaces
,” Appl. Phys. Lett.
,
118
(6
), p. 061902
.10.1063/5.003342252.
Li
,
J. F.
,
Song
,
A. L.
, and
Cummer
,
S. A.
, 2020
, “
Bianisotropic Acoustic Metasurface for Surface-Wave-Enhanced Wavefront Transformation
,” Phys. Rev. Appl.
,
14
, p. 044012
.10.1103/PhysRevApplied.14.04401253.
Xie
,
H. F.
, and
Hou
,
Z. L.
, 2021
, “
Nonlocal Metasurface for Acoustic Focusing
,” Phys. Rev. Appl.
,
15
, p. 034054
.10.1103/PhysRevApplied.15.03405454.
Li
,
J. F.
,
Díaz-Rubio
,
A.
,
Shen
,
C.
,
Jia
,
Z. T.
,
Tretyakov
,
S. A.
, and
Cummer
,
S. A.
, 2019
, “
Highly Efficient Generation of Angular Momentum With Cylindrical Bianisotropic Metasurfaces
,” Phys. Rev. Appl.
,
11
(2
), p. 024016
.10.1103/PhysRevApplied.11.02401655.
Song
,
A. L.
,
Li
,
J. F.
,
Peng
,
X. Y.
,
Shen
,
C.
,
Zhu
,
X. H.
,
Chen
,
T. N.
, and
Cummer
,
S. A.
, 2019
, “
Asymmetric Absorption in Acoustic Metamirror Based on Surface Impedance Engineering
,” Phys. Rev. Appl.
,
12
, p. 054048
.10.1103/PhysRevApplied.12.05404856.
Fan
,
S. W.
,
Zhao
,
S. D.
,
Chen
,
A. L.
,
Wang
,
Y. F.
,
Assouar
,
M. B.
, and
Wang
,
Y. S.
, 2019
, “
Tunable Broadband Reflective Acoustic Metasurface
,” Phys. Rev. Appl.
,
11
(4
), p. 044038
.10.1103/PhysRevApplied.11.04403857.
Liang
,
Z. X.
, and
Li
,
J.
, 2012
, “
Extreme Acoustic Metamaterial by Coiling Up Space
,” Phys. Rev. Lett.
,
108
(11
), p. 114301
.10.1103/PhysRevLett.108.11430158.
Li
,
Y.
,
Liang
,
B.
,
Tao
,
X.
,
Zhu
,
X. F.
,
Zou
,
X. Y.
, and
Cheng
,
J. C.
, 2012
, “
Acoustic Focusing by Coiling Up Space
,” Appl. Phys. Lett.
,
101
(23
), p. 233508
.10.1063/1.476998459.
Peng
,
P.
,
Xiao
,
B. M.
, and
Wu
,
Y.
, 2014
, “
Flat Acoustic Lens by Acoustic Grating With Curled Slits
,” Phys. Lett. A
,
378
(45
), pp. 3389
–3392
.10.1016/j.physleta.2014.09.04260.
Li
,
Y.
,
Yu
,
G.
,
Liang
,
B.
,
Zou
,
X.
,
Li
,
G.
,
Cheng
,
S.
, and
Cheng
,
J. C.
, 2015
, “
Three-Dimensional Ultrathin Planar Lenses by Acoustic Metamaterials
,” Sci. Rep.
,
4
, p. 6830
.10.1038/srep0683061.
Li
,
Y.
,
Liang
,
B.
,
Zou
,
X. Y.
, and
Cheng
,
J. C.
, 2013
, “
Extraordinary Acoustic Transmission Through Ultrathin Acoustic Metamaterials by Coiling Up Space
,” Appl. Phys. Lett.
,
103
(6
), p. 063509
.10.1063/1.481792562.
Liu
,
B. Y.
,
Ren
,
B.
,
Zhao
,
J. J.
,
Xu
,
X. D.
,
Feng
,
Y. X.
,
Zhao
,
W. Y.
, and
Jiang
,
Y. Y.
, 2017
, “
Experimental Realization of All-Angle Negative Refraction in Acoustic Gradient Metasurface
,” Appl. Phys. Lett.
,
111
(22
), p. 221602
.10.1063/1.500400563.
Zuo
,
S. Y.
,
Wei
,
Q.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2017
, “
Mathematical Operations for Acoustic Signals Based on Layered Labyrinthine Metasurfaces
,” Appl. Phys. Lett.
,
110
(1
), p. 011904
.10.1063/1.497370564.
Zuo
,
S. Y.
,
Wei
,
Q.
,
Tian
,
Y.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2018
, “
Acoustic Analog Computing System Based on Labyrinthine Metasurfaces
,” Sci. Rep.
,
8
(1
), p. 10103
.10.1038/s41598-018-27741-265.
Memoli
,
G.
,
Caleap
,
M.
,
Asakawa
,
M.
,
Sahoo
,
D. R.
,
Drinkwater
,
B. W.
, and
Subramanian
,
S.
, 2016
, “
Metamaterial Bricks and Quantization of Meta-Surfaces
,” Nat. Commun.
,
8
, p. 14608
.10.1038/ncomms1460866.
Ghaffarivardavagh
,
R.
,
Nikolajczyk
,
J.
,
Holt
,
R. G.
,
Anderson
,
S.
, and
Zhang
,
X.
, 2018
, “
Horn-Like Space-Coiling Metamaterials Toward Simultaneous Phase and Amplitude Modulation
,” Nat. Commun.
,
9
(1
), p. 1349
.10.1038/s41467-018-03839-z67.
Molerón
,
M.
,
Serra-Garcia
,
M.
, and
Daraio
,
C.
, 2014
, “
Acoustic Fresnel Lenses With Extraordinary Transmission
,” Appl. Phys. Lett.
,
105
(11
), p. 114109
.10.1063/1.489627668.
Jia
,
Z. T.
,
Li
,
J. F.
,
Shen
,
C.
,
Xie
,
Y. B.
, and
Cummer
,
S. A.
, 2018
, “
Systematic Design of Broadband Path-Coiling Acoustic Metamaterials
,” J. Appl. Phys.
,
123
(2
), p. 025101
.10.1063/1.500948869.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
,
Wu
,
D. J.
, and
Liu
,
X. J.
, 2018
, “
Dynamic Generation and Modulation of Acoustic Bottle beams by Metasurfaces
,” Sci. Rep.
,
8
, p. 12682
.10.1038/s41598-018-31066-570.
Jia
,
Y. R.
,
Ji
,
W. Q.
,
Wu
,
D. J.
, and
Liu
,
X. J.
, 2018
, “
Metasurface-Enabled Airborne Fractional Acoustic Vortex Emitter
,” Appl. Phys. Lett.
,
113
(17
), p. 173502
.10.1063/1.505169671.
Zuo
,
S. Y.
,
Tian
,
Y.
,
Wei
,
Q.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2018
, “
Acoustic Analog Computing Based on a Reflective Metasurface With Decoupled Modulation of Phase and Amplitude
,” J. Appl. Phys.
,
123
(9
), p. 091704
.10.1063/1.500461772.
Ju
,
F. F.
,
Tian
,
Y.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2018
, “
Asymmetric Acoustic Transmission With a Lossy Gradient-Index Metasurface
,” Appl. Phys. Lett.
,
113
(12
), p. 121901
.10.1063/1.503226373.
Tang
,
W. P.
,
Ren
,
C. Y.
,
Tong
,
S. S.
, and
Huang
,
X. C.
, 2019
, “
Sandwich-Like Space-Coiling Metasurfaces for Weak-Dispersion High-Efficiency Transmission
,” Appl. Phys. Lett.
,
115
(13
), p. 134102
.10.1063/1.512049474.
Tang
,
W. P.
, and
Ren
,
C. Y.
, 2017
, “
Total Transmission of Airborne Sound by Impedance-Matched Ultra-Thin Metasurfaces
,” J. Phys. D Appl. Phys.
,
50
(10
), p. 105102
.10.1088/1361-6463/aa5a8675.
Jahdali
,
R. A.
, and
Wu
,
Y.
, 2016
, “
High Transmission Acoustic Focusing by Impedance-Matched Acoustic Meta-Surfaces
,” Appl. Phys. Lett.
,
108
(3
), p. 031902
.10.1063/1.493993276.
Zhu
,
X. F.
,
Li
,
K.
,
Zhang
,
P.
,
Zhu
,
J.
,
Zhang
,
J. T.
,
Tian
,
C.
, and
Liu
,
S. C.
, 2016
, “
Implementation of Dispersion-Free Slow Acoustic Wave Propagation and Phase Engineering With Helical-Structured Metamaterials
,” Nat. Commun.
,
7
, p. 11731
.10.1038/ncomms1173177.
Ding
,
Y.
,
Statharas
,
E. C.
,
Yao
,
K.
, and
Hong
,
M.
, 2017
, “
A Broadband Acoustic Metamaterial With Impedance Matching Layer of Gradient Index
,” Appl. Phys. Lett.
,
110
(24
), p. 241903
.10.1063/1.498647278.
Esfahlani
,
H.
,
Lissek
,
H.
, and
Mosig
,
J. R.
, 2017
, “
Generation of Acoustic Helical Wavefronts Using Metasurfaces
,” Phys. Rev. B
,
95
(2
), p. 024312
.10.1103/PhysRevB.95.02431279.
Liang
,
S. J.
,
Liu
,
T.
,
Gao
,
H.
,
Gu
,
Z. M.
,
An
,
S. W.
, and
Zhu
,
J.
, 2020
, “
Acoustic Metasurface by Layered Concentric Structures
,” Phys. Rev. Res.
,
2
, p. 043362
.10.1103/PhysRevResearch.2.04336280.
Tang
,
K.
,
Qiu
,
C. Y.
,
Lu
,
J. Y.
,
Ke
,
M. Z.
, and
Liu
,
Z. Y.
, 2015
, “
Focusing and Directional Beaming Effects of Airborne Sound Through a Planar Lens With Zigzag Slits
,” J. Appl. Phys.
,
117
(2
), p. 024503
.10.1063/1.490591081.
Lan
,
J.
,
Li
,
Y. F.
, and
Liu
,
X. Z.
, 2017
, “
Broadband Manipulation of Refracted Wavefronts by Gradient Acoustic Metasurface With V-Shape Structure
,” Appl. Phys. Lett.
,
111
(26
), p. 263501
.10.1063/1.500595082.
Li
,
Y.
,
Jiang
,
X.
,
Li
,
R. Q.
,
Liang
,
B.
,
Zou
,
X. Y.
,
Yin
,
L. L.
, and
Cheng
,
J. C.
, 2014
, “
Experimental Realization of Full Control of Reflected Waves With Subwavelength Acoustic Metasurfaces
,” Phys. Rev. Appl.
,
2
, p. 064002
.10.1103/PhysRevApplied.2.06400283.
Liu
,
B. Y.
,
Zhao
,
J. J.
,
Xu
,
X. D.
,
Zhao
,
W. Y.
, and
Jiang
,
Y. Y.
, 2017
, “
All-Angle Negative Reflection With an Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification
,” Sci. Rep.
,
7
(1
), p. 13852
.10.1038/s41598-017-14387-984.
Qi
,
S.
, and
Assouar
,
B.
, 2017
, “
Acoustic Energy Harvesting Based on Multilateral Metasurfaces
,” Appl. Phys. Lett.
,
111
(24
), p. 243506
.10.1063/1.500329985.
Qi
,
S.
,
Li
,
Y.
, and
Assouar
,
B.
, 2017
, “
Acoustic Focusing and Energy Confinement Based on Multilateral Metasurfaces
,” Phys. Rev. Appl.
,
7
, p. 054006
.10.1103/PhysRevApplied.7.05400686.
Wang
,
X.
,
Mao
,
D. X.
, and
Li
,
Y.
, 2017
, “
Broadband Acoustic Skin Cloak Based on Spiral Metasurfaces
,” Sci. Rep.
,
7
(1
), p. 11604
.10.1038/s41598-017-11846-187.
Li
,
J.
, and
Pendry
,
J. B.
, 2008
, “
Hiding Under the Carpet: A New Strategy for Cloaking
,” Phys. Rev. Lett.
,
101
(20
), p. 203901
.10.1103/PhysRevLett.101.20390188.
Zhu
,
Y. F.
,
Zou
,
X. Y.
,
Li
,
R. Q.
,
Jiang
,
X.
,
Tu
,
J.
,
Liang
,
B.
, and
Cheng
,
J. C.
, 2015
, “
Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface
,” Sci. Rep.
,
5
, p. 10966
.10.1038/srep1096689.
Zhu
,
Y. F.
,
Fan
,
X. D.
,
Liang
,
B.
,
Yang
,
J.
,
Yang
,
J.
,
Yin
,
L. L.
, and
Cheng
,
J. C.
, 2016
, “
Multi-Frequency Acoustic Metasurface for Extraordinary Reflection and Sound Focusing
,” AIP Adv.
,
6
(12
), p. 121702
.10.1063/1.496860790.
Shen
,
C.
,
Díaz-Rubio
,
A.
,
Li
,
J. F.
, and
Cummer
,
S. A.
, 2018
, “
A Surface Impedance-Based Three-Channel Acoustic Metasurface Retroreflector
,” Appl. Phys. Lett.
,
112
(18
), p. 183503
.10.1063/1.502548191.
Li
,
Y.
,
Jiang
,
X.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Zhang
,
L.
, 2015
, “
Metascreen-Based Acoustic Passive Phased Array
,” Phys. Rev. Appl.
,
4
, p. 024003
.10.1103/PhysRevApplied.4.02400392.
Li
,
Y.
,
Qi
,
S. B.
, and
Assouar
,
M. B.
, 2016
, “
Theory of Metascreen-Based Acoustic Passive Phased Array
,” New J. Phys.
,
18
(4
), p. 043024
.10.1088/1367-2630/18/4/04302493.
Lan
,
J.
,
Li
,
Y. F.
,
Xu
,
Y.
, and
Liu
,
X. Z.
, 2017
, “
Manipulation of Acoustic Wavefront by Gradient Metasurface Based on Helmholtz Resonators
,” Sci. Rep.
,
7
(1
), p. 10587
.10.1038/s41598-017-10781-594.
Li
,
Y.
, and
Assouar
,
M. B.
, 2015
, “
Three-Dimensional Collimated Self-Accelerating Beam Through Acoustic Metascreen
,” Sci. Rep.
,
5
, p. 17612
.10.1038/srep1761295.
Jiang
,
X.
,
Li
,
Y.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Zhang
,
L. K.
, 2016
, “
Convert Acoustic Resonances to Orbital Angular Momentum
,” Phys. Rev. Lett.
,
117
(3
), p. 034301
.10.1103/PhysRevLett.117.03430196.
Han
,
L. X.
,
Yao
,
Y. W.
,
Zhang
,
X.
,
Wu
,
F. G.
,
Dong
,
H. F.
,
Mu
,
Z. F.
, and
Li
,
J. B.
, 2018
, “
Acoustic Metasurface for Refracted Wave Manipulation
,” Phys. Lett. A
,
382
(5
), pp. 357
–361
.10.1016/j.physleta.2017.12.00497.
Dong
,
Y. B.
,
Wang
,
Y. B.
,
Sun
,
J. X.
,
Ding
,
C. L.
,
Zhai
,
S. L.
, and
Zhao
,
X. P.
, 2020
, “
Transmission Control of Acoustic Metasurface With Dumbbell-Shaped Double-Split Hollow Sphere
,” Mod. Phys. Lett. B
,
34
(33
), p. 2050386
.10.1142/S021798492050386898.
Zhai
,
S. L.
,
Chen
,
H. J.
,
Ding
,
C. L.
,
Shen
,
F. L.
,
Luo
,
C. R.
, and
Zhao
,
X. P.
, 2015
, “
Manipulation of Transmitted Wave Front Using Ultrathin Planar Acoustic Metasurfaces
,” Appl. Phys. A
,
120
(4
), pp. 1283
–1289
.10.1007/s00339-015-9379-699.
Lan
,
J.
,
Zhang
,
X. W.
,
Liu
,
X. Z.
, and
Li
,
Y. F.
, 2018
, “
Wavefront Manipulation Based on Transmissive Acoustic Metasurface With Membrane-Type Hybrid Structure
,” Sci. Rep.
,
8
(1
), p. 14171
.10.1038/s41598-018-32547-3100.
Shen
,
C.
, and
Cummer
,
S. A.
, 2018
, “
Harnessing Multiple Internal Reflections to Design Highly Absorptive Acoustic Metasurfaces
,” Phys. Rev. Appl.
,
9
, p. 054009
.10.1103/PhysRevApplied.9.054009101.
Liu
,
B. Y.
,
Zhao
,
W. Y.
, and
Jiang
,
Y. Y.
, 2016
, “
Full-Angle Negative Reflection Realized by a Gradient Acoustic Metasurface
,” AIP Adv.
,
6
(11
), p. 115110
.10.1063/1.4967430102.
Ding
,
C. L.
,
Chen
,
H. J.
,
Zhai
,
S. L.
,
Liu
,
S.
, and
Zhao
,
X. P.
, 2015
, “
The Anomalous Manipulation of Acoustic Waves Based on Planar Metasurface With Split Hollow Sphere
,” J. Phys. D Appl. Phys.
,
48
(4
), p. 045303
.10.1088/0022-3727/48/4/045303103.
Zhu
,
Y.
,
Fan
,
X.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Jing
,
Y.
, 2017
, “
Ultrathin Acoustic Metasurface-Based Schroeder Diffuser
,” Phys. Rev. X
,
7
(2
), p. 021034
.10.1103/PhysRevX.7.021034104.
Wang
,
X. P.
,
Wan
,
L. L.
,
Chen
,
T. N.
,
Song
,
A. L.
, and
Du
,
X. W.
, 2016
, “
Broadband Reflected Wavefronts Manipulation Using Structured Phase Gradient Metasurfaces
,” AIP Adv.
,
6
(6
), p. 065320
.10.1063/1.4954750105.
Dubois
,
M.
,
Shi
,
C. Z.
,
Wang
,
Y.
, and
Zhang
,
X.
, 2017
, “
A Thin and Conformal Metasurface for Illusion Acoustics of Rapidly Changing Profiles
,” Appl. Phys. Lett.
,
110
(15
), p. 151902
.10.1063/1.4979978106.
Zhao
,
Y. P.
,
Liu
,
J. J.
,
Liang
,
B.
, and
Cheng
,
J. C.
, 2020
, “
An Ultrathin Planar Acoustic Metasurface Diffuser With Narrowband Uniform Reflection
,” AIP Adv.
,
10
(8
), p. 085122
.10.1063/5.0011243107.
Faure
,
C.
,
Richoux
,
O.
,
Félix
,
S.
, and
Pagneux
,
V.
, 2016
, “
Experiments on Metasurface Carpet Cloaking for Audible Acoustics
,” Appl. Phys. Lett.
,
108
(6
), p. 064103
.10.1063/1.4941810108.
Zhu
,
Y. F.
, and
Assouar
,
B.
, 2019
, “
Multifunctional Acoustic Metasurface Based on an Array of Helmholtz Resonators
,” Phys. Rev. B
,
99
(17
), p. 174109
.10.1103/PhysRevB.99.174109109.
Wen
,
J. K.
,
Zhu
,
Y. F.
,
Liang
,
B.
,
Yang
,
J.
, and
Cheng
,
J. C.
, 2020
, “
Wavelength-Dependent Multi-Functional Wavefront Manipulation for Reflected Acoustic Waves
,” Appl. Phys. Express
,
13
(9
), p. 094003
.10.35848/1882-0786/abb062110.
Li
,
Y.
,
Ren
,
Z. W.
,
Yuan
,
X. J.
,
Chen
,
M. J.
,
Cao
,
W. K.
,
Cheng
,
Q.
,
Jin
,
Z. K.
,
Cheng
,
X. D.
,
Zhang
,
C.
,
Yang
,
J.
, and
Fang
,
D. N.
, 2019
, “
Reflection Phase Dispersion Editing Generates Wideband Invisible Acoustic Huygens's Metasurface
,” J. Acoust. Soc. Am.
,
146
(1
), pp. 166
–171
.10.1121/1.5116012111.
Zhou
,
H. T.
,
Fan
,
S. W.
,
Li
,
X. S.
,
Fu
,
W. X.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
, 2020
, “
Tunable Arc-Shaped Acoustic Metasurface Carpet Cloak Smart
,” Mater. Struct.
,
29
(6
), p. 065016
.10.1088/1361-665X/ab87e4112.
Zhai
,
S. L.
,
Ding
,
C. L.
,
Chen
,
H. J.
,
Shen
,
F. L.
,
Luo
,
C. R.
, and
Zhao
,
X. P.
, 2016
, “
Anomalous Manipulation of Acoustic Wavefront With an Ultrathin Planar Metasurface
,” ASME J. Vib. Acoust.
,
138
(4
), p. 041019
.10.1115/1.4033258113.
Chen
,
X.
,
Liu
,
P.
,
Hou
,
Z. W.
, and
Pei
,
Y. M.
, 2017
, “
Implementation of Acoustic Demultiplexing With Membrane-Type Metasurface in Low Frequency Range
,” Appl. Phys. Lett.
,
110
(16
), p. 161909
.10.1063/1.4981898114.
Chen
,
H. J.
, 2018
, “
Anomalous Reflection of Acoustic Waves in Air With Metasurfaces at Low Frequency
,” Adv. Cond. Matter Phys.
,
2018
, pp. 1
–7
.10.1155/2018/5452071115.
Ma
,
F. Y.
,
Huang
,
M.
,
Xu
,
Y. C.
, and
Wu
,
J. H.
, 2018
, “
Bilayer Synergetic Coupling Double Negative Acoustic Metasurface and Cloak
,” Sci. Rep.
,
8
(1
), p. 5906
.10.1038/s41598-018-24231-3116.
Ma
,
F. Y.
,
Xu
,
Y. C.
, and
Wu
,
J. H.
, 2019
, “
Pure Solid Acoustic Metasurface With Coating Adapter
,” Appl. Phys. Express
,
12
(5
), p. 054003
.10.7567/1882-0786/ab130c117.
Ma
,
F. Y.
,
Xu
,
Y. C.
, and
Wu
,
J. H.
, 2019
, “
Shell-Type Acoustic Metasurface and Arc-Shape Carpet Cloak
,” Sci. Rep.
,
9
(1
), p. 8076
.10.1038/s41598-019-44619-z118.
Mei
,
J.
, and
Wu
,
Y.
, 2014
, “
Controllable Transmission and Total Reflection Through an Impedance-Matched Acoustic Metasurface
,” New J. Phys.
,
16
(12
), p. 123007
.10.1088/1367-2630/16/12/123007119.
Su
,
Y. C.
, and
Ko
,
L. H.
, 2022
, “
Acoustic Wave Splitting and Wave Trapping Designs
,” ASME J. Vib. Acoust.
,
144
(5
), p. 034502
.10.1115/1.4053713120.
Wang
,
X. P.
,
Wan
,
L. L.
,
Chen
,
T. N.
,
Song
,
A. L.
, and
Wang
,
F.
, 2016
, “
Broadband Unidirectional Acoustic Cloak Based on Phase Gradient Metasurfaces With Two Flat Acoustic Lenses
,” J. Appl. Phys.
,
120
(1
), p. 014902
.10.1063/1.4954326121.
Wang
,
X. P.
,
Wan
,
L. L.
,
Chen
,
T. N.
,
Liang
,
Q. X.
, and
Song
,
A. L.
, 2016
, “
Broadband Acoustic Diode by Using Two Structured Impedance-Matched Acoustic Metasurfaces
,” Appl. Phys. Lett.
,
109
(4
), p. 044102
.10.1063/1.4960019122.
Song
,
X. P.
,
Chen
,
T. N.
,
Zhu
,
J.
,
He
,
Y. B.
, and
Zhang
,
J. Z.
, 2019
, “
A Switchable Sound Tunnel by Using an Acoustic Metasurface
,” J. Theor. Comput. Acoust.
,
27
(04
), p. 1950017
.10.1142/S2591728519500178123.
Molerón
,
M.
,
Serra-Garcia
,
M.
, and
Daraio
,
C.
, 2016
, “
Visco-Thermal Effects in Acoustic Metamaterials: From Total Transmission to Total Reflection and High Absorption
,” New. J. Phys.
,
18
(3
), p. 033003
.10.1088/1367-2630/18/3/033003124.
Jiang
,
X.
,
Li
,
Y.
, and
Zhang
,
L. K.
, 2017
, “
Thermoviscous Effects on Sound Transmission Through a Metasurface of Hybrid Resonances
,” J. Acoust. Soc. Am.
,
141
(4
), pp. EL363
–EL368
.10.1121/1.4979682125.
Gerard
,
N. J.
,
Li
,
Y.
, and
Jing
,
Y.
, 2018
, “
Investigation of Acoustic Metasurfaces With Constituent Material Properties Considered
,” J. Appl. Phys.
,
123
(12
), p. 124905
.10.1063/1.5007863126.
Gerard
,
N. J.
, and
Jing
,
Y.
, 2020
, “
Loss in Acoustic Metasurfaces: A Blessing in Disguise
,” MRS Commun.
,
10
(1
), pp. 32
–41
.10.1557/mrc.2019.148127.
Li
,
Y.
,
Shen
,
C.
,
Xie
,
Y.
,
Li
,
J.
,
Wang
,
W.
,
Cummer
,
S. A.
, and
Jing
,
Y.
, 2017
, “
Tunable Asymmetric Transmission Via Lossy Acoustic Metasurfaces
,” Phys. Rev. Lett.
,
119
(3
), p. 035501
.10.1103/PhysRevLett.119.035501128.
Fan
,
S. W.
,
Zhu
,
Y.
,
Cao
,
L.
,
Wang
,
Y. F.
,
Chen
,
A. L.
,
Merkel
,
A.
,
Wang
,
Y. S.
, and
Assouar
,
B.
, 2020
, “
Broadband Tunable Lossy Metasurface With Decoupled Amplitude and Phase Modulations for Acoustic Holography
,” Smart Mater. Struct.
,
29
(10
), p. 105038
.10.1088/1361-665X/abaa98129.
Li
,
P.
,
Chang
,
Y. F.
,
Du
,
Q. J.
,
Xu
,
Z. H.
,
Liu
,
M. Y.
, and
Peng
,
P.
, 2020
, “
Continuously Tunable Acoustic Metasurface With Rotatable Anisotropic Three-Component Resonators
,” Appl. Phys. Express
,
13
(2
), p. 025507
.10.35848/1882-0786/ab6f27130.
Yang
,
X. Y.
,
Fei
,
C. L.
,
Li
,
D.
,
Li
,
Z. X.
,
Sun
,
X. H.
,
Hou
,
S.
,
Feng
,
W.
, and
Yang
,
Y. T.
, 2019
, “
Analysis of Dynamic High-Frequency Acoustic Field Control by Metasurfaces Lens
,” AIP Adv.
,
9
(11
), p. 115119
.10.1063/1.5124119131.
Wu
,
X. X.
,
Xia
,
X. X.
,
Tian
,
J. X.
,
Liu
,
Z. Y.
, and
Wen
,
W. J.
, 2016
, “
Broadband Reflective Metasurface for Focusing Underwater Ultrasonic Waves With Linearly Tunable Focal Length
,” Appl. Phys. Lett.
,
108
(16
), p. 163502
.10.1063/1.4947437132.
Cheng
,
B. Z.
,
Hou
,
H.
, and
Gao
,
N. S.
, 2018
, “
An Acoustic Metasurface With Simultaneous Phase Modulation and Energy Attenuation
,” Mod. Phys. Lett. B
,
32
(23
), p. 1850276
.10.1142/S0217984918502767133.
Jin
,
Y. B.
,
Kumar
,
R.
,
Poncelet
,
O.
,
Mondain-Monval
,
O.
, and
Brunet
,
T.
, 2019
, “
Flat Acoustics With Soft Gradient-Index Metasurfaces
,” Nat. Commun.
,
10
(1
), p. 143
.10.1038/s41467-018-07990-5134.
Zhou
,
H. T.
,
Fu
,
W. X.
,
Li
,
X. S.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
, 2022
, “
Loosely Coupled Reflective Impedance Metasurfaces: Precise Manipulation of Waterborne Sound by Top Ology Optimization
,” Mech. Syst. Signal Process.
,
177
, p. 109228
.10.1016/j.ymssp.2022.109228135.
Chen
,
Z.
,
Yan
,
F.
,
Negahban
,
M.
, and
Li
,
Z.
, 2020
, “
Resonator-Based Reflective Metasurface for Low-Frequency Underwater Acoustic Waves
,” J. Appl. Phys.
,
128
(5
), p. 055305
.10.1063/5.0006523136.
Chen
,
Z.
,
Yan
,
F.
,
Negahban
,
M.
, and
Li
,
Z.
, 2021
, “
Extremely Thin Reflective Metasurface for Low-Frequency Underwater Acoustic Waves: Sharp Focusing, Self-Bending, and Carpet Cloaking
,” J. Appl. Phys.
,
130
(12
), p. 125304
.10.1063/5.0041092137.
Zou
,
H. Z.
,
Li
,
P.
, and
Peng
,
P.
, 2020
, “
An Ultra-Thin Acoustic Metasurface With Multiply Resonant Units
,” Phys. Lett. A
,
384
(7
), p. 126151
.10.1016/j.physleta.2019.126151138.
Xu
,
Z. H.
,
Li
,
P.
,
Liu
,
M. Y.
,
Du
,
Q. J.
,
Guo
,
Y. F.
, and
Peng
,
P.
, 2022
, “
An Ultrathin Acoustic Metasurface Composed of an Anisotropic Three Component Resonator
,” Appl. Phys. Express
,
15
(2
), p. 027004
.10.35848/1882-0786/ac4a0e139.
Liu
,
M. Y.
,
Li
,
P.
,
Du
,
Q. J.
, and
Peng
,
P.
, 2019
, “
Reflected Wavefront Manipulation by Acoustic Metasurfaces With Anisotropic Local Resonant Units
,” EPL
,
125
(5
), p. 54004
.10.1209/0295-5075/125/54004140.
Milton
,
G. W.
, and
Cherkaev
,
A. V.
, 1995
, “
Which Elasticity Tensors Are Realizable?
,” ASME J. Eng. Mater. Technol.
,
117
(4
), pp. 483
–493
.10.1115/1.2804743141.
Chen
,
Y.
,
Liu
,
X. N.
,
Xiang
,
P.
, and
Hu
,
G. K.
, 2016
, “
Pentamode Material for Underwater Acoustic Wave Control
,” Adv. Mech.
,
46
(1
), p. 201609
(in Chinese).10.6052/1000-0992-16-010142.
Tian
,
Y.
,
Wei
,
Q.
,
Cheng
,
Y.
,
Xu
,
Z.
, and
Liu
,
X. J.
, 2015
, “
Broadband Manipulation of Acoustic Wavefronts by Pentamode Metasurface
,” Appl. Phys. Lett.
,
107
(22
), p. 221906
.10.1063/1.4936762143.
Chu
,
Y. Y.
,
Wang
,
Z. H.
, and
Xu
,
Z.
, 2020
, “
Broadband High-Efficiency Controllable Asymmetric Propagation by Pentamode Acoustic Metasurface
,” Phys. Lett. A
,
384
(11
), p. 126230
.10.1016/j.physleta.2019.126230144.
Chen
,
Y.
, and
Hu
,
G. K.
, 2019
, “
Broadband and High-Transmission Metasurface for Converting Underwater Cylindrical Waves to Plane Waves
,” Phys. Rev. Appl.
,
12
, p. 044046
.10.1103/PhysRevApplied.12.044046145.
Cai
,
L.
,
Wen
,
J. H.
,
Yu
,
D. L.
,
Lu
,
Z. M.
,
Chen
,
X.
, and
Zhao
,
X.
, 2017
, “
Beam Steering of the Acoustic Metasurface Under a Subwavelength Periodic Modulation
,” Appl. Phys. Lett.
,
111
(20
), p. 201902
.10.1063/1.5001954146.
Liu
,
Y.
,
Li
,
Y. F.
, and
Liu
,
X. Z.
, 2019
, “
Manipulation of Acoustic Wavefront by Transmissive Metasurface Based on Pentamode Metamaterials
,” Chin. Phys. B
,
28
(2
), p. 024301
.10.1088/1674-1056/28/2/024301147.
Zhang
,
X. D.
,
Chen
,
H.
,
Zhao
,
Z. G.
,
Zhao
,
A. G.
,
Cai
,
X.
, and
Wang
,
L.
, 2020
, “
Experimental Demonstration of a Broadband Waterborne Acoustic Metasurface for Shifting Reflected Waves
,” J. Appl. Phys.
,
127
(17
), p. 174902
.10.1063/1.5139008148.
Sun
,
Z. Y.
,
Shi
,
Y.
,
Sun
,
X. C.
,
Jia
,
H.
,
Jin
,
Z. K.
,
Deng
,
K.
, and
Yang
,
J.
, 2021
, “
Underwater Acoustic Multiplexing Communication by Pentamode Metasurface
,” J Phys. D Appl. Phys.
,
54
(20
), p. 205303
.10.1088/1361-6463/abe43e149.
Shen
,
X. H.
,
Sun
,
C. T.
,
Barnhart
,
M. V.
, and
Huang
,
G. L.
, 2018
, “
Elastic Wave Manipulation by Using a Phase-Controlling Meta-Layer
,” J. Appl. Phys.
,
123
(9
), p. 091708
.10.1063/1.4996018150.
Yuan
,
S. M.
,
Chen
,
A. L.
,
Cao
,
L. Y.
,
Zhang
,
H. W.
,
Fan
,
S. W.
,
Assouar
,
M. B.
, and
Wang
,
Y. S.
, 2020
, “
Tunable Multifunctional Fish-Bone Elastic Metasurface for Wavefront Manipulation of Transmitted in-Plane Waves
,” J. Appl. Phys.
,
128
(22
), p. 224502
.10.1063/5.0029045151.
Su
,
X. S.
, and
Norris
,
A. N.
, 2016
, “
Focusing, Refraction, and Asymmetric Transmission of Elastic Waves in Solid Metamaterials With Aligned Parallel Gaps
,” J. Acoust. Soc. Am.
,
139
(6
), pp. 3386
–3394
.10.1121/1.4950770152.
Su
,
X. S.
,
Lu
,
Z. C.
, and
Norris
,
A. N.
, 2018
, “
Elastic Metasurface for Splitting SV- and P-Waves in Elastic Solids
,” J. Appl. Phys.
,
123
(9
), p. 091701
.10.1063/1.5007731153.
Liu
,
Y. L.
,
Li
,
H. B.
,
Zhang
,
J.
,
Liu
,
X. Y.
,
Wu
,
L. K.
,
Ning
,
H. M.
, and
Hu
,
N.
, 2020
, “
Design of Elastic Metasurfaces for Controlling Shear Vertical Waves Using Uniaxial Scaling Transformation Method
,” Int. J. Mech. Sci.
,
169
, p. 105335
.10.1016/j.ijmecsci.2019.105335154.
Zhang
,
J.
,
Su
,
X. S.
,
Pennec
,
Y.
,
Jing
,
Y.
,
Liu
,
X. F.
, and
Hu
,
N.
, 2018
, “
Wavefront Steering of Elastic Shear Vertical Waves in Solids Via a Composite-Plate-Based Metasurface
,” J. Appl. Phys.
,
124
(16
), p. 164505
.10.1063/1.5049515155.
Zeng
,
L. H.
,
Zhang
,
J.
,
Liu
,
Y. L.
,
Zhao
,
Y. X.
, and
Hu
,
N.
, 2019
, “
Asymmetric Transmission of Elastic Shear Vertical Waves in Solids
,” Ultrasonics
,
96
, pp. 34
–39
.10.1016/j.ultras.2019.03.016156.
Su
,
Y. C.
,
Chen
,
T. Y.
,
Ko
,
L. H.
, and
Lu
,
M. H.
, 2020
, “
Design of Metasurfaces to Enable Shear Horizontal Wave Trapping
,” J. Appl. Phys.
,
128
(17
), p. 175107
.10.1063/5.0018872157.
Qiu
,
H.
,
Chen
,
M. T.
,
Huan
,
Q.
, and
Li
,
F. X.
, 2019
, “
Steering and Focusing of Fundamental Shear Horizontal Guided Waves in Plates by Using Multiple-Strip Metasurfaces
,” EPL
,
127
(4
), p. 46004
.10.1209/0295-5075/127/46004158.
Qiu
,
H.
, and
Li
,
F. X.
, 2020
, “
Manipulation of Shear Horizontal Guided Wave With Arbitrary Wave Fronts by Using Metasurfaces
,” J. Phys. D Appl. Phys.
,
53
(28
), p. 285301
.10.1088/1361-6463/ab850d159.
Zhang
,
J.
,
Su
,
X. S.
,
Liu
,
Y. L.
,
Zhao
,
Y. X.
,
Jing
,
Y.
, and
Hu
,
N.
, 2019
, “
Metasurface Constituted by Thin Composite Beams to Steer Flexural Waves in Thin Plates
,” Int. J. Solids Struct.
,
162
, pp. 14
–20
.10.1016/j.ijsolstr.2018.11.025160.
Tian
,
Z. H.
, and
Yu
,
L. Y.
, 2019
, “
Elastic Phased Diffraction Gratings for Manipulation of Ultrasonic Guided Waves in Solids
,” Phys. Rev. Appl.
,
11
, p. 024052
.10.1103/PhysRevApplied.11.024052161.
Jiang
,
Y. Q.
,
Liu
,
Y. L.
,
Kou
,
M. Q.
,
Li
,
H. B.
,
Wu
,
X. P.
,
Zeng
,
X. J.
,
Bi
,
X. Y.
,
Zhang
,
H.
, and
Hu
,
N.
, 2022
, “
Multi-Parameter Independent Manipulation for Flexural Wave by Notched Metasurface
,” Int. J. Mech. Sci.
,
214
, p. 106928
.10.1016/j.ijmecsci.2021.106928162.
Cao
,
X.
,
Jia
,
C. L.
,
Miao
,
H. C.
,
Kang
,
G. Z.
, and
Zhang
,
C.
, 2021
, “
Excitation and Manipulation of Guided Shear-Horizontal Plane Wave Using Elastic Metasurfaces
,” Smart Mater. Struct.
,
30
(5
), p. 055013
.10.1088/1361-665X/abf23e163.
Liu
,
Y. Q.
,
Liang
,
Z. X.
,
Liu
,
F.
,
Diba
,
O.
,
Lamb
,
A.
, and
Li
,
J.
, 2017
, “
Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces
,” Phys. Rev. Lett.
,
119
(3
), p. 034301
.10.1103/PhysRevLett.119.034301164.
Li
,
B.
,
Hu
,
Y. B.
,
Chen
,
J. L.
,
Su
,
G. Y.
,
Liu
,
Y. Q.
,
Zhao
,
M. Y.
, and
Li
,
Z.
, 2020
, “
Efficient Asymmetric Transmission of Elastic Waves in Thin Plates With Lossless Metasurfaces
,” Phys. Rev. Appl.
,
14
, p. 054029
.10.1103/PhysRevApplied.14.054029165.
Zhang
,
J.
,
Zhang
,
X. B.
,
Xu
,
F. L.
,
Ding
,
X. Y.
,
Deng
,
M. X.
,
Hu
,
N.
, and
Zhang
,
C.
, 2020
, “
Vibration Control of Flexural Waves in Thin Plates by 3D-Printed Metasurfaces
,” J. Sound Vib.
,
481
, p. 115440
.10.1016/j.jsv.2020.115440166.
Jiang
,
M.
,
Zhou
,
H. T.
,
Li
,
X. S.
,
Fu
,
W. X.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
, 2022
, “
Extreme Transmission of Elastic Metasurface for Deep Subwavelength Focusing
,” Acta Mech. Sin.
,
38
, p. 121497
.10.1007/s10409-021-09073-z167.
Lee
,
H.
,
Lee
,
J. K.
,
Seung
,
H. M.
, and
Kim
,
Y. Y.
, 2018
, “
Mass-Stiffness Substructuring of an Elastic Metasurface for Full Transmission Beam Steering
,” J. Mech. Phys. Solids
,
112
, pp. 577
–593
.10.1016/j.jmps.2017.11.025168.
Lee
,
S. W.
,
Seung
,
H. M.
,
Choi
,
W.
,
Kim
,
M.
, and
Oh
,
J. H.
, 2020
, “
Broad-Angle Refractive Transmodal Elastic Metasurface
,” Appl. Phys. Lett.
,
117
(21
), p. 213502
.10.1063/5.0026928169.
Yilmaz
,
C.
,
Hulbert
,
G. M.
, and
Kikuchi
,
N.
, 2007
, “
Phononic Band Gaps Induced by Inertial Amplification in Periodic Media
,” Phys. Rev. B
,
76
(5
), p. 054309
.10.1103/PhysRevB.76.054309170.
Van Damme
,
B.
,
Hannema
,
G.
,
Sales Souza
,
L.
,
Weisse
,
B.
,
Tallarico
,
D.
, and
Bergamini
,
A.
, 2021
, “
Inherent Non-Linear Damping in Resonators With Inertia Amplification
,” Appl. Phys. Lett.
,
119
(6
), p. 061901
.10.1063/5.0061826171.
Lee
,
S. W.
, and
Oh
,
J. H.
, 2020
, “
Single-Layer Elastic Metasurface With Double Negativity for Anomalous Refraction
,” J. Phys. D Appl. Phys.
,
53
(26
), p. 265301
.10.1088/1361-6463/ab7fd6172.
Yang
,
X. W.
,
Kweun
,
M.
, and
Kim
,
Y. Y.
, 2019
, “
Monolayer Metamaterial for Full Mode-Converting Transmission of Elastic Waves
,” Appl. Phys. Lett.
,
115
(7
), p. 071901
.10.1063/1.5109758173.
Zheng
,
M. Y.
,
Park
,
C.
, Il
,
Liu
,
X. N.
,
Zhu
,
R.
,
Hu
,
G. K.
, and
Kim
,
Y. Y.
, 2020
, “
Non-Resonant Metasurface for Broadband Elastic Wave Mode Splitting
,” Appl. Phys. Lett.
,
116
(17
), p. 171903
.10.1063/5.0005408174.
Zhu
,
H. F.
, and
Semperlotti
,
F.
, 2016
, “
Anomalous Refraction of Acoustic Guided Waves in Solids With Geometrically Tapered Metasurfaces
,” Phys. Rev. Lett.
,
117
(3
), p. 034302
.10.1103/PhysRevLett.117.034302175.
Zhu
,
H. F.
,
Walsh
,
T. F.
, and
Semperlotti
,
F.
, 2018
, “
Total Internal Reflection Elastic Metasurfaces-Design and Application to Structural Vibration Isolation
,” Appl. Phys. Lett.
,
113
(22
), p. 221903
.10.1063/1.5052538176.
Lin
,
Z. B.
,
Xu
,
W. K.
,
Xuan
,
C. M.
,
Qi
,
W. C.
, and
Wang
,
W.
, 2021
, “
Modular Elastic Metasurfaces With Mass Oscillators for Transmitted Flexural Wave Manipulation
,” J. Phys. D Appl. Phys.
,
54
(25
), p. 255303
.10.1088/1361-6463/abee47177.
Jin
,
Y. B.
,
Bonello
,
B.
,
Moiseyenko
,
R. P.
,
Pennec
,
Y.
,
Boyko
,
O.
, and
Djafari-Rouhani
,
B.
, 2017
, “
Pillar-Type Acoustic Metasurface
,” Phys. Rev. B
,
96
(10
), p. 104311
.10.1103/PhysRevB.96.104311178.
Cao
,
L. Y.
,
Yang
,
Z. C.
,
Xu
,
Y. L.
, and
Assouar
,
B.
, 2018
, “
Deflecting Flexural Wave With High Transmission by Using Pillared Elastic Metasurface
,” Smart Mater. Struct.
,
27
(7
), p. 075051
.10.1088/1361-665X/aaca51179.
Cao
,
L. Y.
,
Xu
,
Y. L.
,
Assouar
,
B.
, and
Yang
,
Z. C.
, 2018
, “
Asymmetric Flexural Wave Transmission Based on Dual-Layer Elastic Gradient Metasurfaces
,” Appl. Phys. Lett.
,
113
(18
), p. 183506
.10.1063/1.5050671180.
Cao
,
L. Y.
,
Yang
,
Z. C.
,
Xu
,
Y. L.
,
Chen
,
Z. L.
,
Zhu
,
Y. F.
,
Fan
,
S. W.
,
Donda
,
K.
,
Vincent
,
B.
, and
Assouar
,
B.
, 2021
, “
Pillared Elastic Metasurface With Constructive Interference for Flexural Wave Manipulation
,” Mech. Syst. Signal Process.
,
146
, p. 107035
.10.1016/j.ymssp.2020.107035181.
Cao
,
L. Y.
,
Yang
,
Z. C.
,
Xu
,
Y. L.
,
Fan
,
S. W.
,
Zhu
,
Y. F.
,
Chen
,
Z. L.
,
Vincent
,
B.
, and
Assouar
,
B.
, 2020
, “
Disordered Elastic Metasurfaces
,” Phys. Rev. Appl.
,
13
, p. 014054
.10.1103/PhysRevApplied.13.014054182.
Jin
,
Y. B.
,
Wang
,
W.
,
Khelif
,
A.
, and
Djafari-Rouhani
,
B.
, 2021
, “
Elastic Metasurfaces for Deep and Robust Subwavelength Focusing and Imaging
,” Phys. Rev. Appl.
,
15
, p. 024005
.10.1103/PhysRevApplied.15.024005183.
Wang
,
W.
,
Iglesias
,
J.
,
Jin
,
Y. B.
,
Djafari-Rouhani
,
B.
, and
Khelif
,
A.
, 2021
, “
Experimental Realization of a Pillared Metasurface for Flexural Wave Focusing
,” APL Mater.
,
9
(5
), p. 051125
.10.1063/5.0052278184.
Xu
,
W. K.
,
Zhang
,
M.
,
Lin
,
Z. B.
,
Liu
,
C. L.
,
Qi
,
W. C.
, and
Wang
,
W.
, 2019
, “
Anomalous Refraction Manipulation of Lamb Waves Using Single-Groove Metasurfaces
,” Phys. Scr.
,
94
(10
), p. 105807
.10.1088/1402-4896/ab2b01185.
Xu
,
W. K.
,
Zhang
,
M.
,
Ning
,
J. Y.
,
Wang
,
W.
, and
Yang
,
T. Z.
, 2019
, “
Anomalous Refraction Control of Mode-Converted Elastic Wave Using Compact Notch-Structured Metasurface
,” Mater. Res. Express
,
6
(6
), p. 065802
.10.1088/2053-1591/ab0dc8186.
Lin
,
Z. B.
,
Wang
,
W.
,
Xu
,
W. K.
, and
Yang
,
T. Z.
, 2022
, “
Topology Optimization of Single-Groove Acoustic Metasurfaces Using Genetic Algorithms
,” Arch. Appl. Mech.
,
92
(3
), pp. 961
–969
.10.1007/s00419-021-02084-z187.
Kim
,
M. S.
,
Lee
,
W. R.
,
Kim
,
Y. Y.
, and
Oh
,
J. H.
, 2018
, “
Transmodal Elastic Metasurface for Broad Angle Total Mode Conversion
,” Appl. Phys. Lett.
,
112
(24
), p. 241905
.10.1063/1.5032157188.
Kim
,
M. S.
,
Lee
,
W. R.
,
Park
,
C.
, Il
, and
Oh
,
J. H.
, 2020
, “
Elastic Wave Energy Entrapment for Reflectionless Metasurface
,” Phys. Rev. Appl.
,
13
, p. 054036
.10.1103/PhysRevApplied.13.054036189.
Kim
,
S. Y.
,
Lee
,
W.
,
Lee
,
J. S.
, and
Kim
,
Y. Y.
, 2021
, “
Longitudinal Wave Steering Using Beam-Type Elastic Metagratings
,” Mech. Syst. Signal Process.
,
156
, p. 107688
.10.1016/j.ymssp.2021.107688190.
Cao
,
L. Y.
,
Yang
,
Z. C.
,
Xu
,
Y. L.
,
Fan
,
S. W.
,
Zhu
,
Y. F.
,
Chen
,
Z. L.
,
Li
,
Y.
, and
Assouar
,
B.
, 2020
, “
Flexural Wave Absorption by Lossy Gradient Elastic Metasurface
,” J. Mech. Phys. Solids
,
143
, p. 104052
.10.1016/j.jmps.2020.104052191.
Ruan
,
Y. D.
,
Liang
,
X.
, and
Hu
,
C. J.
, 2020
, “
Retroreflection of Flexural Wave by Using Elastic Metasurface
,” J. Appl. Phys.
,
128
(4
), p. 045116
.10.1063/5.0005928192.
Zhu
,
Y.
,
Merkel
,
A.
,
Donda
,
K.
,
Fan
,
S.
,
Cao
,
L.
, and
Assouar
,
B.
, 2021
, “
Nonlocal Acoustic Metasurface for Ultrabroadband Sound Absorption
,” Phys. Rev. B
,
103
(6
), p. 064102
.10.1103/PhysRevB.103.064102193.
Zhu
,
H. F.
,
Patnaik
,
S.
,
Walsh
,
T. F.
,
Jared
,
B. H.
, and
Semperlotti
,
F.
, 2020
, “
Nonlocal Elastic Metasurfaces: Enabling Broadband Wave Control Via Intentional Nonlocality
,” Proc. Natl. Acad. Sci. U. S. A.
,
117
(42
), pp. 26099
–26108
.10.1073/pnas.2004753117194.
Zhu
,
H. F.
,
Walsh
,
T. F.
,
Jared
,
B. H.
, and
Semperlotti
,
F.
, 2022
, “
On the Broadband Vibration Isolation Performance of Nonlocal Total-Internal-Reflection Metasurfaces
,” J. Sound Vib.
,
522
, p. 116670
.10.1016/j.jsv.2021.116670195.
Fan
,
L. J.
, and
Mei
,
J.
, 2020
, “
Metagratings for Waterborne Sound: Various Functionalities Enabled by an Efficient Inverse-Design Approach
,” Phys. Rev. Appl.
,
14
, p. 044003
.10.1103/PhysRevApplied.14.044003196.
Schwan
,
L.
,
Umnova
,
O.
,
Boutin
,
C.
, and
Groby
,
J. P.
, 2018
, “
Nonlocal Boundary Conditions for Corrugated Acoustic Metasurface With Strong Near-Field Interactions
,” J. Appl. Phys.
,
123
(9
), p. 091712
.10.1063/1.5011385197.
Quan
,
L.
,
Ra)di
,
Y.
,
Sounas
,
D. L.
, and
Alù
,
A.
, 2018
, “
Maximum Willis Coupling in Acoustic Scatterers
,” Phys. Rev. Lett.
,
120
(25
), p. 254301
.10.1103/PhysRevLett.120.254301198.
Esfahlani
,
H.
,
Mazor
,
Y.
, and
Alù
,
A.
, 2021
, “
Homogenization and Design of Acoustic Willis Metasurfaces
,” Phys. Rev. B
,
103
(5
), p. 054306
.10.1103/PhysRevB.103.054306199.
Popa
,
B. I.
,
Zhai
,
Y. X.
, and
Kwon
,
H. S.
, 2018
, “
Broadband Sound Barriers With Bianisotropic Metasurfaces
,” Nat. Commun.
,
9
(1
), p. 5299
.10.1038/s41467-018-07809-3200.
Tong
,
S. S.
,
Ren
,
C. Y.
, and
Tang
,
W. P.
, 2021
, “
Asymmetric Sandwich-Like Elements for Bianisotropic Acoustic Metasurfaces
,” J. Phys. D Appl. Phys.
,
54
(48
), p. 485101
.10.1088/1361-6463/ac2113201.
Koo
,
S.
,
Cho
,
C.
,
Jeong
,
J. H.
, and
Park
,
N.
, 2016
, “
Acoustic Omni Meta-Atom for Decoupled Access to All Octants of a Wave Parameter Space
,” Nat. Commun.
,
7
, p. 13012
.10.1038/ncomms13012202.
Zhou
,
H. T.
,
Fu
,
W. X.
,
Wang
,
Y. F.
,
Wang
,
Y. S.
,
Laude
,
V.
, and
Zhang
,
C.
, 2021
, “
Ultra-Broadband Passive Acoustic Metasurface for Wide-Angle Carpet Cloaking
,” Mater. Des.
,
199
, p. 109414
.10.1016/j.matdes.2020.109414203.
Noguchi
,
Y.
, and
Yamada
,
T.
, 2021
, “
Level Set-Based Topology Optimization for Graded Acoustic Metasurfaces Using Two-Scale Homogenization
,” Finite Elem. Anal. Des.
,
196
, p. 103606
.10.1016/j.finel.2021.103606204.
Dong
,
H. W.
,
Shen
,
C.
,
Zhao
,
S. D.
,
Qiu
,
W. B.
,
Zhou
,
J.
,
Ch
,
Z.
,
Zheng
,
H. R.
,
Cummer
,
S. A.
,
Wang
,
Y. S.
, and
Cheng
,
L.
, 2022
, “
Achromatic Metasurfaces With Inversely Customized Dispersion for Ultra-Broadband Acoustic Beam Engineering
,” Natl. Sci. Rev.
, epub.10.1093/nsr/nwac030205.
Ahn
,
B.
,
Lee
,
H.
,
Lee
,
J. S.
, and
Kim
,
Y. Y.
, 2019
, “
Topology Optimization of Metasurfaces for Anomalous Reflection of Longitudinal Elastic Waves
,” Comput. Methods Appl. Mech. Eng.
,
357
, p. 112582
.10.1016/j.cma.2019.112582206.
Rong
,
J. J.
, and
Ye
,
W. J.
, 2020
, “
Multifunctional Elastic Metasurface Design With Topology Optimization
,” Acta Mater.
,
185
, pp. 382
–399
.10.1016/j.actamat.2019.12.017207.
Rong
,
J. J.
,
Ye
,
W. J.
,
Zhang
,
S. Y.
, and
Liu
,
Y. J.
, 2020
, “
Frequency-Coded Passive Multifunctional Elastic Metasurfaces
,” Adv. Funct. Mater.
,
30
(50
), p. 2005285
.10.1002/adfm.202005285208.
Noguchi
,
Y.
,
Yamada
,
T.
,
Otomori
,
M.
,
Izui
,
K.
, and
Nishiwaki
,
S.
, 2015
, “
An Acoustic Metasurface Design for Wave Motion Conversion of Longitudinal Waves to Transverse Waves Using Topology Optimization
,” Appl. Phys. Lett.
,
107
(22
), p. 221909
.10.1063/1.4936997209.
Miyata
,
K.
,
Noguchi
,
Y.
,
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
, 2018
, “
Optimum Design of a Multi-Functional Acoustic Metasurface Using Topology Optimization Based on Zwicker)s Loudness Model
,” Comput. Methods Appl. Mech. Eng.
,
331
, pp. 116
–137
.10.1016/j.cma.2017.11.017210.
Tian
,
Y.
,
Wei
,
Q.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2017
, “
Acoustic Holography Based on Composite Metasurface With Decoupled Modulation of Phase and Amplitude
,” Appl. Phys. Lett.
,
110
(19
), p. 191901
.10.1063/1.4983282211.
Zhang
,
H. K.
,
Zhang
,
W. X.
,
Liao
,
Y. H.
,
Zhou
,
X. M.
,
Li
,
J. F.
,
Hu
,
G. K.
, and
Zhang
,
X. D.
, 2020
, “
Creation of Acoustic Vortex Knots
,” Nat. Commun.
,
11
(1
), p. 3956
.10.1038/s41467-020-17744-x212.
Zhu
,
Y. F.
,
Gerard
,
N. J.
,
Xia
,
X. X.
,
Stevenson
,
G. C.
,
Cao
,
L. Y.
,
Fan
,
S. W.
,
Spadaccini
,
C. M.
,
Jing
,
Y.
, and
Assouar
,
B.
, 2021
, “
Systematic Design and Experimental Demonstration of Transmission-Type Multiplexed Acoustic Meta-Holograms
,” Adv. Funct. Mater.
,
31
(27
), p. 2101947
.10.1002/adfm.202101947213.
Liu, H. L., Yang, Z., Wang, W., Xuan, C. M., and Xu, W. K., 2022, “Design of Elastic Wave Metasurfaces Based on Lattice Truss Material,”
Arch. Appl. Mech.
, epub.10.1007/s00419-022-02166-6214.
Yan
,
P. Y.
,
Zhu
,
X. F.
,
Chen
,
D.
, and
Wu
,
D. J.
, 2021
, “
Perfect Multiple Splitting With Arbitrary Power Distribution by Acoustic Metasurfaces
,” Europhys. Lett.
,
134
(4
), p. 48003
.10.1209/0295-5075/134/48003215.
Chen
,
A. L.
,
Wang
,
X. M.
, and
Wang
,
Y. S.
, 2021
, “
Tunable Control and Functional Switch of Transmitted Acoustic Waves by an Arch-Shaped Metasurface
,” Chin. J. Theor. Appl. Mech.
,
53
(3
), pp. 789
–801
(in Chinese).10.6052/0459-1879-20-456216.
Ju
,
F. F.
,
Xiong
,
W.
,
Liu
,
C.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2019
, “
Acoustic Accelerating Beam Based on a Curved Metasurface
,” Appl. Phys. Lett.
,
114
(11
), p. 113507
.10.1063/1.5087544217.
He
,
J. J.
,
Jiang
,
X.
,
Ta
,
D. A.
, and
Wang
,
W. Q.
, 2020
, “
Experimental Demonstration of Underwater Ultrasound Cloaking Based on Metagrating
,” Appl. Phys. Lett.
,
117
(9
), p. 091901
.10.1063/5.0021002218.
Lawrence
,
A. J.
,
Goldsberry
,
B. M.
,
Wallen
,
S. P.
, and
Haberman
,
M. R.
, 2020
, “
Numerical Study of Acoustic Focusing Using a Bianisotropic Acoustic Lens
,” J. Acoust. Soc. Am.
,
148
(4
), pp. EL365
–EL370
.10.1121/10.0002137219.
Liang
,
D. L.
,
Hu
,
G. R.
,
Ding
,
N.
,
Ma
,
Q. Y.
,
Guo
,
G. P.
,
Li
,
Y. Z.
,
Tu
,
J.
, and
Zhang
,
D.
, 2022
, “
Quasi-Bessel Acoustic-Vortex Beams Constructed by the Line-Focused Phase Modulation for a Ring-Array of Sectorial Planar Transducers
,” IEEE Trans. Ultrason. Ferr.
,
69
(1
), pp. 377
–385
.10.1109/TUFFC.2021.3120285220.
Chen
,
J.
,
Rao
,
J.
,
Lisevych
,
D.
, and
Fan
,
Z.
, 2019
, “
Broadband Ultrasonic Focusing in Water With an Ultra-Compact Metasurface Lens
,” Appl. Phys. Lett.
,
114
(10
), p. 104101
.10.1063/1.5090956221.
Jiang
,
X.
,
He
,
J. J.
,
Zhang
,
C. X.
,
Zhao
,
H. L.
,
Wang
,
W. Q.
,
Ta
,
D. A.
, and
Qiu
,
C. W.
, 2022
, “
Three-Dimensional Ultrasound Subwavelength Arbitrary Focusing With Broadband Sparse Metalens
,” Sci. China-Phys. Mech. Astron.
,
65
(2
), p. 224311
.10.1007/s11433-021-1784-3222.
Wang
,
Y. H.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2019
, “
Modulation of Acoustic Waves by a Broadband Metagrating
,” Sci. Rep.
,
9
(1
), p. 7271
.10.1038/s41598-019-43850-y223.
Siviloglou
,
G. A.
, and
Christodoulides
,
D. N.
, 2007
, “
Accelerating Finite Energy Airy Beams
,” Opt. Lett.
,
32
(8
), pp. 979
–981
.10.1364/OL.32.000979224.
Zhang
,
P.
,
Li
,
T. C.
,
Zhu
,
J.
,
Zhu
,
X. F.
,
Yang
,
S.
,
Wang
,
Y.
,
Yin
,
X. B.
, and
Zhang
,
X.
, 2014
, “
Generation of Acoustic Self-Bending and Bottle Beams by Phase Engineering
,” Nat. Commun.
,
5
, p. 4316
.10.1038/ncomms5316225.
Lin
,
Z.
,
Guo
,
X. S.
,
Tu
,
J.
,
Ma
,
Q. Y.
,
Wu
,
J. R.
, and
Zhang
,
D.
, 2015
, “
Acoustic Non-Diffracting Airy Beam
,” J. Appl. Phys.
,
117
(10
), p. 104503
.10.1063/1.4914295226.
Bar-Ziv
,
U.
,
Postan
,
A.
, and
Segev
,
M.
, 2015
, “
Observation of Shape-Preserving Accelerating Underwater Acoustic Beams
,” Phys. Rev. B
,
92
(10
), p. 100301(R)
.10.1103/PhysRevB.92.100301227.
Zheng
,
Z.
,
Zhang
,
B. F.
,
Chen
,
H.
,
Ding
,
J. P.
, and
Wang
,
H. T.
, 2011
, “
Optical Trapping With Focused Airy Beams
,” Appl. Opt.
,
50
(1
), pp. 43
–49
.10.1364/AO.50.000043228.
Zhao
,
J. Y.
,
Chremmos
,
I. D.
,
Song
,
D. H.
,
Christodoulides
,
D. N.
,
Efremidis
,
N. K.
, and
Chen
,
Z. G.
, 2015
, “
Curved Singular Beams for Three-Dimensional Particle Manipulation
,” Sci. Rep.
,
5
, p. 12086
.10.1038/srep12086229.
Courtney
,
C. R. P.
,
Demore
,
C. E. M.
,
Wu
,
H. X.
,
Grinenko
,
A.
,
Wilcox
,
P. D.
,
Cochran
,
S.
, and
Drinkwater
,
B. W.
, 2014
, “
Independent Trapping and Manipulation of Microparticles Using Dexterous Acoustic Tweezers
,” Appl. Phys. Lett.
,
104
(15
), p. 154103
.10.1063/1.4870489230.
Mitri
,
F. G.
, 2016
, “
Airy Acoustical–Sheet Spinner Tweezers
,” J. Appl. Phys.
,
120
(10
), p. 104901
.10.1063/1.4962397231.
Liang
,
Y.
,
Hu
,
Y.
,
Song
,
D. H.
,
Lou
,
C. B.
,
Zhang
,
X. Z.
,
Chen
,
Z. G.
, and
Xu
,
J. J.
, 2015
, “
Image Signal Transmission With Airy Beams
,” Opt. Lett.
,
40
(23
), p. 5686
.10.1364/OL.40.005686232.
Zhao
,
S. P.
,
Hu
,
Y. X.
,
Lu
,
J.
,
Qiu
,
X. J.
,
Cheng
,
J. C.
, and
Burnett
,
I.
, 2014
, “
Delivering Sound Energy Along an Arbitrary Convex Trajectory
,” Sci. Rep.
,
4
, p. 6628
.10.1038/srep06628233.
Tang
,
S.
,
Ren
,
B.
,
Feng
,
Y. X.
,
Song
,
J.
, and
Jiang
,
Y. Y.
, 2021
, “
The Generation of Acoustic Airy Beam With Selective Band Based on Binary Metasurfaces: Customized on Demand
,” Appl. Phys. Lett.
,
119
(7
), p. 071907
.10.1063/5.0060032234.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
,
Wu
,
D. J.
, and
Liu
,
X. J.
, 2018
, “
Broadband Acoustic Focusing by Airy-Like Beams Based on Acoustic Metasurfaces
,” J. Appl. Phys.
,
123
(4
), p. 044503
.10.1063/1.5010705235.
Gao
,
H.
,
Gu
,
Z. M.
,
Liang
,
B.
,
Zou
,
X. Y.
,
Yang
,
J.
,
Yang
,
J.
, and
Cheng
,
J. C.
, 2016
, “
Acoustic Focusing by Symmetrical Self-Bending Beams With Phase Modulations
,” Appl. Phys. Lett.
,
108
(7
), p. 073501
.10.1063/1.4941992236.
Jiang
,
X.
,
Li
,
Y.
,
Ta
,
D.
, and
Wang
,
W. Q.
, 2020
, “
Ultrasonic Sharp Autofocusing With Acoustic Metasurface
,” Phys. Rev. B
,
102
(6
), p. 064308
.10.1103/PhysRevB.102.064308237.
Xia
,
M.
,
Zhang
,
X.
,
Wu
,
F. G.
,
Wang
,
L. C.
,
Liu
,
Y. C.
,
Chen
,
Z. H.
, and
Yao
,
Y. W.
, 2020
, “
Broadband High-Quality Airy Beams Via Lossy Acoustic Gradient-Index Metasurfaces
,” Solid State Commun.
,
308
, p. 113810
.10.1016/j.ssc.2019.113810238.
Li
,
X. S.
,
Zhou
,
H. T.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
, 2021
, “
Modulation of Acoustic Self-Accelerating Beams With Tunable Curved Metasurfaces
,” Appl. Phys. Lett.
,
118
(2
), p. 023503
.10.1063/5.0035286239.
Wang
,
T.
,
Ke
,
M. Z.
,
Li
,
W. P.
,
Yang
,
Q.
,
Qiu
,
C. Y.
, and
Liu
,
Z. Y.
, 2016
, “
Particle Manipulation With Acoustic Vortex Beam Induced by a Brass Plate With Spiral Shape Structure
,” Appl. Phys. Lett.
,
109
(12
), p. 123506
.10.1063/1.4963185240.
Baudoin
,
M.
,
Gerbedoen
,
J. C.
,
Riaud
,
A.
,
Matar
,
O. B.
,
Smagin
,
N.
, and
Thomas
,
J. L.
, 2019
, “
Folding a Focalized Acoustical Vortex on a Flat Holographic Transducer: Miniaturized Selective Acoustical Tweezers
,” Sci. Adv.
,
5
(4
), p. eaav1967
.10.1126/sciadv.aav1967241.
Marzo
,
A.
, and
Drinkwater
,
B. W.
, 2019
, “
Holographic Acoustic Tweezers
,” Proc. Natl. Acad. Sci. U. S. A.
,
116
(1
), pp. 84
–89
.10.1073/pnas.1813047115242.
Ozcelik
,
A.
,
Rufo
,
J.
,
Guo
,
F.
,
Gu
,
Y. Y.
,
Li
,
P.
,
Lata
,
J.
, and
Huang
,
T. J.
, 2018
, “
Acoustic Tweezers for the Life Sciences
,” Nat. Methods
,
15
(12
), pp. 1021
–1028
.10.1038/s41592-018-0222-9243.
Gong
,
Z.
, and
Baudoin
,
M.
, 2019
, “
Particle Assembly With Synchronized Acoustic Tweezers
,” Phys. Rev. Appl.
,
12
, p. 024045
.10.1103/PhysRevApplied.12.024045244.
Anhäuser
,
A.
,
Wunenburger
,
R.
, and
Brasselet
,
E.
, 2012
, “
Acoustic Rotational Manipulation Using Orbital Angular Momentum Transfer
,” Phys. Rev. Lett.
,
109
(3
), p. 034301
.10.1103/PhysRevLett.109.034301245.
Wunenburger
,
R.
,
Lozano
,
J. I. V.
, and
Brasselet
,
E.
, 2015
, “
Acoustic Orbital Angular Momentum Transfer to Matter by Chiral Scattering
,” New J. Phys.
,
17
(10
), p. 103022
.10.1088/1367-2630/17/10/103022246.
Shi
,
C. Z.
,
Dubois
,
M.
,
Wang
,
Y.
, and
Zhang
,
X.
, 2017
, “
High-Speed Acoustic Communication by Multiplexing Orbital Angular Momentum
,” Proc. Natl. Acad. Sci. U. S. A.
,
114
(28
), pp. 7250
–7253
.10.1073/pnas.1704450114247.
Ye
,
L. P.
,
Qiu
,
C. Y.
,
Lu
,
J. Y.
,
Tang
,
K.
,
Jia
,
H.
,
Ke
,
M. Z.
,
Peng
,
S. S.
, and
Liu
,
Z. Y.
, 2016
, “
Making Sound Vortices by Metasurfaces
,” AIP Adv.
,
6
(8
), p. 085007
.10.1063/1.4961062248.
Guo
,
Z. Y.
,
Liu
,
H. J.
,
Zhou
,
H.
,
Zhou
,
K. Y.
,
Wang
,
S. M.
,
Shen
,
F.
,
Gong
,
Y. B.
,
Gao
,
J.
,
Liu
,
S. T.
, and
Guo
,
K.
, 2019
, “
High-Order Acoustic Vortex Field Generation Based on a Metasurface
,” Phys. Rev. E
,
100
(5
), p. 053315
.10.1103/PhysRevE.100.053315249.
Luo
,
Y. C.
,
Jia
,
Y. R.
,
Yao
,
J.
,
Wu
,
D. J.
, and
Liu
,
X. J.
, 2020
, “
Enhanced Fractional Acoustic Vortices by an Annulus Acoustic Metasurface With Multi-Layered Rings
,” Adv. Mater. Technol.
,
5
, p. 2000356
.10.1002/admt.202000356250.
Hou
,
Z. L.
,
Ding
,
H.
,
Wang
,
N. Y.
,
Fang
,
X. S.
, and
Li
,
Y.
, 2021
, “
Acoustic Vortices Via Nonlocal Metagratings
,” Phys. Rev. Appl.
,
16
, p. 014002
.10.1103/PhysRevApplied.16.014002251.
Jiang
,
X.
,
Ta
,
D.
, and
Wang
,
W. Q.
, 2020
, “
Modulation of Orbital-Angular-Momentum Symmetry of Nondiffractive Acoustic Vortex Beams and Realization Using a Metasurface
,” Phys. Rev. Appl.
,
14
, p. 034014
.10.1103/PhysRevApplied.14.034014252.
Jiang
,
X.
,
Zhao
,
J. J.
,
Liu
,
S. L.
,
Liang
,
B.
,
Zou
,
X. Y.
,
Yang
,
J.
,
Qiu
,
C. W.
, and
Cheng
,
J. C.
, 2016
, “
Broadband and Stable Acoustic Vortex Emitter With Multi-Arm Coiling Slits
,” Appl. Phys. Lett.
,
108
(20
), p. 203501
.10.1063/1.4949337253.
Fan
,
X. D.
,
Liang
,
B.
,
Yang
,
J.
, and
Cheng
,
J. C.
, 2019
, “
Illusion for Airborne Sound Source by a Closed Layer With Subwavelength Thickness
,” Sci. Rep.
,
9
(1
), p. 1750
.10.1038/s41598-018-38424-3254.
Liu
,
Y. C.
,
Zhang
,
X.
,
Guo
,
J. H.
,
Yang
,
H.
,
Han
,
L. X.
,
Yao
,
Y. W.
, and
Wu
,
F. G.
, 2020
, “
Tailoring of Diversified Sound Vortices Using Curved Impedance-Matched Acoustic Metasurfaces
,” Mod. Phys. Lett. B
,
34
(12
), p. 2050121
.10.1142/S0217984920501213255.
Liu
,
J. J.
,
Liang
,
B.
,
Yang
,
J.
,
Yang
,
J.
, and
Cheng
,
J. C.
, 2020
, “
Generation of Non-Aliased Two-Dimensional Acoustic Vortex With Enclosed Metasurface
,” Sci. Rep.
,
10
(1
), p. 3827
.10.1038/s41598-020-60836-3256.
Liu
,
J. J.
,
Liang
,
B.
, and
Cheng
,
J. C.
, 2021
, “
Focusing a Two-Dimensional Acoustic Vortex Beyond Diffraction Limit on an Ultrathin Structured Surface
,” Phys. Rev. Appl.
,
15
, p. 014015
.10.1103/PhysRevApplied.15.014015257.
Liu
,
B. Y.
,
Su
,
Z. X.
,
Zeng
,
Y.
,
Wang
,
Y. T.
,
Huang
,
L. L.
, and
Zhang
,
S.
, 2021
, “
Acoustic Geometric-Phase Meta-Array
,” New J. Phys.
,
23
(11
), p. 113026
.10.1088/1367-2630/ac33f2258.
Zeng
,
J. F.
,
Zhang
,
X.
,
Wu
,
F. G.
,
Han
,
L. X.
,
Wang
,
Q.
,
Mu
,
Z. F.
,
Dong
,
H. F.
, and
Yao
,
Y. W.
, 2019
, “
Phase Modulation of Acoustic Vortex Beam With Metasurfaces
,” Phys. Lett. A
,
383
(22
), pp. 2640
–2644
.10.1016/j.physleta.2019.05.027259.
Fu
,
Y. Y.
,
Shen
,
C.
,
Zhu
,
X. H.
,
Li
,
J. F.
,
Liu
,
Y. W.
,
Cummer
,
S. A.
, and
Xu
,
Y. D.
, 2020
, “
Sound Vortex Diffraction Via Topological Charge in Phase Gradient Metagratings
,” Sci. Adv.
,
6
, p. eaba9876
.10.1126/sciadv.aba9876260.
Zou
,
Z. G.
,
Lirette
,
R.
, and
Zhang
,
L. K.
, 2020
, “
Orbital Angular Momentum Reversal and Asymmetry in Acoustic Vortex Beam Reflection
,” Phys. Rev. Lett.
,
125
(7
), p. 074301
.10.1103/PhysRevLett.125.074301261.
Wang
,
W.
,
Tan
,
Y.
,
Liang
,
B.
,
Ma
,
G. C.
,
Wang
,
S. B.
, and
Cheng
,
J. C.
, 2021
, “
Generalized Momentum Conservation and Fedorov-Imbert Linear Shift of Acoustic Vortex Beams at a Metasurface
,” Phys. Rev. B
,
104
(17
), p. 174301
.10.1103/PhysRevB.104.174301262.
Chen
,
D. C.
,
Zhou
,
Q. X.
,
Zhu
,
X. F.
,
Xu
,
Z.
, and
Wu
,
D. J.
, 2019
, “
Focused Acoustic Vortex by an Artificial Structure With Two Sets of Discrete Archimedean Spiral Slits
,” Appl. Phys. Lett.
,
115
(8
), p. 083501
.10.1063/1.5108687263.
Jiménez
,
N.
,
Sánchez-Morcillo
,
V. J.
,
Picó
,
R.
,
Garcia-Raffi
,
L. M.
,
Romero-Garcia
,
V.
, and
Staliunas
,
K.
, 2015
, “
High-Order Acoustic Bessel Beam Generation by Spiral Gratings
,” Phys. Procedia
,
70
, pp. 245
–248
.10.1016/j.phpro.2015.08.146264.
Wang
,
Y.
,
Qian
,
J.
,
Xia
,
J. P.
,
Ge
,
Y.
,
Yuan
,
S. Q.
,
Sun
,
H. X.
, and
Liu
,
X. J.
, 2021
, “
Acoustic Bessel Vortex Beam by Quasi-Three-Dimensional Reflected Metasurfaces
,” Micromachines
,
12
(11
), p. 1388
.10.3390/mi12111388265.
Jiménez
,
N.
,
Groby
,
J. P.
, and
García
,
V. R.
, 2021
, “
Spiral Sound‐Diffusing Metasurfaces Based on Holographic Vortices
,” Sci. Rep.
,
11
(1
), p. 10217
.10.1038/s41598-021-89487-8266.
Jiang
,
X.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Qiu
,
C. W.
, 2018
, “
Twisted Acoustics: Metasurface-Enabled Multiplexing and Demultiplexing
,” Adv. Mater.
,
30
(18
), p. 1800257
.10.1002/adma.201800257267.
Jiang
,
X.
,
Shi
,
C.
,
Wang
,
Y.
,
Smalley
,
J.
,
Cheng
,
J.
, and
Zhang
,
X.
, 2020
, “
Nonresonant Metasurface for Fast Decoding in Acoustic Communications
,” Phys. Rev. Appl.
,
13
, p. 014014
.10.1103/PhysRevApplied.13.014014268.
Jiménez-Gambín
,
S.
,
Jiménez
,
N.
, and
Camarena
,
F.
, 2020
, “
Transcranial Focusing of Ultrasonic Vortices by Acoustic Holograms
,” Phys. Rev. Appl.
,
14
, p. 054070
.10.1103/PhysRevApplied.14.054070269.
Gao
,
S. X.
,
Li
,
Y. B.
,
Ma
,
C. R.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2021
, “
Emitting Long-Distance Spiral Airborne Sound Using Low-Profile Planar Acoustic Antenna
,” Nat. Commun.
,
12
(1
), p. 2006
.10.1038/s41467-021-22325-7270.
Zhu
,
Y. F.
,
Zou
,
X. Y.
,
Liang
,
B.
, and
Cheng
,
J. C.
, 2015
, “
Acoustic One-Way Open Tunnel by Using Metasurface
,” Appl. Phys. Lett.
,
107
(11
), p. 113501
.10.1063/1.4930300271.
Liang
,
Q. X.
,
Cheng
,
Y.
,
He
,
J.
,
Chang
,
J. K.
,
Chen
,
T. N.
, and
Li
,
D. C.
, 2018
, “
Ultra-Broadband Acoustic Diode in Open Bend Tunnel by Negative Reflective Metasurface
,” Sci. Rep.
,
8
(1
), p. 16089
.10.1038/s41598-018-34314-w272.
Zhu
,
Y. F.
,
Zou
,
X. Y.
,
Liang
,
B.
, and
Cheng
,
J. C.
, 2015
, “
Broadband Unidirectional Transmission of Sound in Unblocked Channel
,” Appl. Phys. Lett.
,
106
(17
), p. 173508
.10.1063/1.4919537273.
Ge
,
Y.
,
Sun
,
H. X.
,
Yuan
,
S. Q.
, and
Lai
,
Y.
, 2018
, “
Broadband Unidirectional and Omnidirectional Bidirectional Acoustic Insulation Through an Open Window Structure With a Metasurface of Ultrathin Hooklike Meta-Atoms
,” Appl. Phys. Lett.
,
112
(24
), p. 243502
.10.1063/1.5025812274.
Shen
,
C.
,
Xie
,
Y. B.
,
Li
,
J. F.
,
Cummer
,
S. A.
, and
Jing
,
Y.
, 2016
, “
Asymmetric Acoustic Transmission Through Near-Zero-Index and Gradient-Index Metasurfaces
,” Appl. Phys. Lett.
,
108
(22
), p. 223502
.10.1063/1.4953264275.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
,
Wu
,
D. J.
, and
Liu
,
X. J.
, 2018
, “
Asymmetric Phase Modulation of Acoustic Waves Through Unidirectional Metasurfaces
,” Appl. Phys. A
,
124
(1
), p. 13
.10.1007/s00339-017-1289-3276.
Jiang
,
X.
,
Liang
,
B.
,
Zou
,
X. Y.
,
Yang
,
J.
,
Yin
,
L. L.
,
Yang
,
J.
, and
Cheng
,
J. C.
, 2016
, “
Acoustic One-Way Metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer
,” Sci. Rep.
,
6
, p. 28023
.10.1038/srep28023277.
Gu
,
Z. M.
,
Fang
,
X. S.
,
Liu
,
T.
,
Gao
,
H.
,
Liang
,
S. J.
,
Li
,
Y.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Zhu
,
J.
, 2021
, “
Tunable Asymmetric Acoustic Transmission Via Binary Metasurface and Zero-Index Metamaterials
,” Appl. Phys. Lett.
,
118
(11
), p. 113501
.10.1063/5.0046756278.
Song
,
A. L.
,
Chen
,
T. N.
,
Wang
,
X. P.
, and
Wan
,
L. L.
, 2016
, “
Waveform-Preserved Unidirectional Acoustic Transmission Based on Impedance-Matched Acoustic Metasurface and Phononic Crystal
,” J. Appl. Phys.
,
120
(8
), p. 085106
.10.1063/1.4961659279.
Chen
,
C.
,
Chen
,
T. N.
,
Song
,
A. L.
,
Song
,
X. P.
, and
Zhu
,
J.
, 2020
, “
Switchable Asymmetric Acoustic Transmission Based on Topological Insulator and Metasurfaces
,” J. Phys. D Appl. Phys.
,
53
(44
), p. 44LT01
.10.1088/1361-6463/aba5c1280.
Liu
,
B. Y.
, and
Jiang
,
Y. Y.
, 2018
, “
Controllable Asymmetric Transmission Via Gap-Tunable Acoustic Metasurface
,” Appl. Phys. Lett.
,
112
(17
), p. 173503
.10.1063/1.5023852281.
Fu
,
Y. Y.
,
Tao
,
J. Q.
,
Song
,
A. L.
,
Liu
,
Y. W.
, and
Xu
,
Y. D.
, 2020
, “
Controllably Asymmetric Beam Splitting Via Gap-Induced Diffraction Channel Transition in Dual-Layer Binary Metagratings
,” Front. Phys.
,
15
(5
), p. 52502
.10.1007/s11467-020-0968-2282.
Tang
,
S.
,
Ren
,
B.
,
Feng
,
Y. X.
,
Song
,
J.
, and
Jiang
,
Y. Y.
, 2022
, “
Broadband Controllable Asymmetric Accelerating Beam Via Bilayer Binary Acoustic Metasurfaces
,” Ann. Phys. (Berlin)
,
534
(2
), p. 2100208
.10.1002/andp.202100208283.
Xia
,
R. Y.
,
Yi
,
J. L.
,
Chen
,
Z.
, and
Li
,
Z.
, 2020
, “
In Situ Steering of Shear Horizontal Waves in a Plate by a Tunable Electromechanical Resonant Elastic Metasurface
,” J. Phys. D Appl. Phys.
,
53
(9
), p. 095302
.10.1088/1361-6463/ab5cbc284.
Xia
,
J. P.
,
Zhang
,
X. T.
,
Sun
,
H. X.
,
Yuan
,
S. Q.
,
Qian
,
J.
, and
Ge
,
Y.
, 2018
, “
Broadband Tunable Acoustic Asymmetric Focusing Lens From Dual-Layer Metasurfaces
,” Phys. Rev. Appl.
,
10
, p. 014016
.10.1103/PhysRevApplied.10.014016285.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
, and
Wu
,
D. J.
, 2018
, “
Bidirectional Asymmetric Acoustic Focusing by Two Flat Acoustic Metasurfaces
,” Chin. Phys. B
,
27
(12
), p. 124302
.10.1088/1674-1056/27/12/124302286.
Zhu
,
X. H.
,
Li
,
J. F.
,
Shen
,
C.
,
Peng
,
X. Y.
,
Song
,
A. L.
,
Li
,
L. Q.
, and
Cummer
,
S. A.
, 2020
, “
Non-Reciprocal Acoustic Transmission Via Space-Time Modulated Membranes
,” Appl. Phys. Lett.
,
116
(3
), p. 034101
.10.1063/1.5132699287.
Song
,
X. P.
,
Chen
,
T. N.
,
Zhu
,
J.
,
Ding
,
W.
,
Liang
,
Q. X.
, and
Wang
,
X. P.
, 2020
, “
Broadband and Broad-Angle Asymmetric Acoustic Transmission by Unbalanced Excitation of Surface Evanescent Waves Based on Single-Layer Metasurface
,” Phys. Lett. A
,
384
(21
), p. 126419
.10.1016/j.physleta.2020.126419288.
Song
,
X. P.
,
Chen
,
T. N.
, and
Li
,
R.
, 2021
, “
Frequency Band-Selected One-Way Topological Edge Mode Via Acoustic Metamaterials and Metasurface
,” J. Appl. Phys.
,
130
(8
), p. 085101
.10.1063/5.0058546289.
Wang
,
X.
,
Fang
,
X. S.
,
Mao
,
D. X.
,
Jing
,
Y.
, and
Li
,
Y.
, 2019
, “
Extremely Asymmetrical Acoustic Metasurface Mirror at the Exceptional Point
,” Phys. Rev. Lett.
,
123
(21
), p. 214302
.10.1103/PhysRevLett.123.214302290.
Ju
,
F. F.
,
Zou
,
X.
,
Qian
,
S. Y.
, and
Liu
,
X. J.
, 2021
, “
Asymmetric Acoustic Retroflection With a non-Hermitian Metasurface Mirror
,” Appl. Phys. Express
,
14
(12
), p. 124001
.10.35848/1882-0786/ac3543291.
Fu
,
Y. Y.
,
Shen
,
C.
,
Cao
,
Y. Y.
,
Gao
,
L.
,
Chen
,
H. Y.
,
Chan
,
C. T.
,
Cummer
,
S. A.
, and
Xu
,
Y. D.
, 2019
, “
Reversal of Transmission and Reflection Based on Acoustic Metagratings With Integer Parity Design
,” Nat. Commun.
,
10
(1
), p. 2326
.10.1038/s41467-019-10377-9292.
Qian
,
J.
,
Wang
,
Y.
,
Xia
,
J. P.
,
Ge
,
Y.
,
Yuan
,
S. Q.
,
Sun
,
H. X.
, and
Liu
,
X. J.
, 2020
, “
Broadband Integrative Acoustic Asymmetric Focusing Lens Based on Mode-Conversion Meta-Atoms
,” Appl. Phys. Lett.
,
116
(22
), p. 223505
.10.1063/5.0004579293.
Tang
,
S.
,
Ren
,
B.
,
Feng
,
Y. X.
,
Song
,
J.
, and
Jiang
,
Y. Y.
, 2021
, “
Asymmetric Acoustic Beam Shaping Based on Monolayer Binary Metasurfaces
,” Appl. Phys. Express
,
14
(8
), p. 085504
.10.35848/1882-0786/ac15bf294.
Craig
,
S. R.
,
Su
,
X. S.
,
Norris
,
A.
, and
Shi
,
C. Z.
, 2019
, “
Experimental Realization of Acoustic Bianisotropic Gratings
,” Phys. Rev. Appl.
,
11
, p. 061002
.10.1103/PhysRevApplied.11.061002295.
Jia
,
H.
,
Ke
,
M. Z.
,
Li
,
C. H.
,
Qiu
,
C. Y.
, and
Liu
,
Z. Y.
, 2013
, “
Unidirectional Transmission of Acoustic Waves Based on Asymmetric Excitation of Lamb Waves
,” Appl. Phys. Lett.
,
102
(15
), p. 153508
.10.1063/1.4802254296.
Li
,
C. H.
,
Ke
,
M. Z.
,
Ye
,
Y. T.
,
Xu
,
S. J.
,
Qiu
,
C. Y.
, and
Liu
,
Z. Y.
, 2014
, “
Broadband Asymmetric Acoustic Transmission by a Plate With Quasi-Periodic Surface Ridges
,” Appl. Phys. Lett.
,
105
(2
), p. 023511
.10.1063/1.4890721297.
Xu
,
M. X.
,
Lee
,
P. V. S.
, and
Collins
,
D. J.
, 2022
, “
Microfluidic Acoustic Sawtooth Metasurfaces for Patterning and Separation Using Traveling Surface Acoustic Waves
,” Lab Chip
,
22
(1
), pp. 90
–99
.10.1039/D1LC00711D298.
Marzo
,
A.
,
Seah
,
S. A.
,
Drinkwater
,
B. W.
,
Sahoo
,
D. R.
,
Long
,
B.
, and
Subramanian
,
S.
, 2015
, “
Holographic Acoustic Elements for Manipulation of Levitated Objects
,” Nat. Commun.
,
6
, p. 8661
.10.1038/ncomms9661299.
Fushimi
,
T.
,
Yamamoto
,
K.
, and
Ochiai
,
Y.
, 2021
, “
Acoustic Hologram Optimisation Using Automatic Differentiation
,” Sci. Rep.
,
11
(1
), p. 12678
.10.1038/s41598-021-91880-2300.
Hertzberg
,
Y.
, and
Navon
,
G.
, 2011
, “
Bypassing Absorbing Objects in Focused Ultrasound Using Computer Generated Holographic Technique
,” Med. Phys.
,
38
(12
), pp. 6407
–6415
.10.1118/1.3651464301.
Ma
,
Z. C.
,
Holle
,
A. W.
,
Melde
,
K.
,
Qiu
,
T.
,
Poeppel
,
K.
,
Kadiri
,
V. M.
, and
Fischer
,
P.
, 2020
, “
Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel
,” Adv. Mater.
,
32
(4
), p. 1904181
.10.1002/adma.201904181302.
Deng
,
Z. L.
,
Li
,
X. P.
, and
Li
,
G. X.
, 2020
, “
Metasurface Holography
,” Synth. Lect. Mater. Opt.
,
1
(4
), pp. 1
–76
.10.2200/S01008ED1V01Y202004MOP004303.
Xie
,
Y. B.
,
Shen
,
C.
,
Wang
,
W. Q.
,
Li
,
J. F.
,
Suo
,
D. J.
,
Popa
,
B. I.
,
Jing
,
Y.
, and
Cummer
,
S. A.
, 2016
, “
Acoustic Holographic Rendering With Two-Dimensional Metamaterial-Based Passive Phased Array
,” Sci. Rep.
,
6
, p. 35437
.10.1038/srep35437304.
Wang
,
H. P.
,
Gao
,
W. J.
,
Zhu
,
R. R.
,
Wang
,
Z. H.
,
Xu
,
Z. W.
, and
Zheng
,
B.
, 2019
, “
Ultrathin Acoustic Metasurface Holograms With Arbitrary Phase Control
,” Appl. Sci.
,
9
(17
), p. 3585
.10.3390/app9173585305.
Melde
,
K.
,
Mark
,
A. G.
,
Qiu
,
T.
, and
Fischer
,
P.
, 2016
, “
Holograms for Acoustics
,” Nature
,
537
(7621
), pp. 518
–522
.10.1038/nature19755306.
Bakhtiari-Nejad
,
M.
,
Elnahhas
,
A.
,
Hajj
,
M. R.
, and
Shahab
,
S.
, 2018
, “
Acoustic Holograms in Contactless Ultrasonic Power Transfer Systems: Modeling and Experiment
,” J. Appl. Phys.
,
124
(24
), p. 244901
.10.1063/1.5048601307.
Zhang
,
J.
,
Yang
,
Y.
,
Zhu
,
B. P.
,
Li
,
X. J.
,
Jin
,
J.
,
Chen
,
Z. Y.
,
Chen
,
Y.
, and
Zhou
,
Q. F.
, 2018
, “
Multifocal Point Beam Forming by a Single Ultrasonic Transducer With 3D Printed Holograms
,” Appl. Phys. Lett.
,
113
(24
), p. 243502
.10.1063/1.5058079308.
Brown
,
M. D.
, 2019
, “
Phase and Amplitude Modulation With Acoustic Holograms
,” Appl. Phys. Lett.
,
115
(5
), p. 053701
.10.1063/1.5110673309.
Zhu
,
Y. F.
,
Hu
,
J.
,
Fan
,
X. D.
,
Yang
,
J.
,
Liang
,
B.
,
Zhu
,
X. F.
, and
Cheng
,
J. C.
, 2018
, “
Fine Manipulation of Sound Via Lossy Metamaterials With Independent and Arbitrary Reflection Amplitude and Phase
,” Nat. Commun.
,
9
(1
), p. 1632
.10.1038/s41467-018-04103-0310.
Zhu
,
Y. F.
, and
Assouar
,
B.
, 2019
, “
Systematic Design of Multiplexed-Acoustic-Metasurface Hologram With Simultaneous Amplitude and Phase Modulations
,” Phys. Rev. Mater.
,
3
, p. 045201
.10.1103/PhysRevMaterials.3.045201311.
Zhang
,
J.
,
Tian
,
Y.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2020
, “
Acoustic Holography Using Composite Metasurfaces
,” Appl. Phys. Lett.
,
116
(3
), p. 030501
.10.1063/1.5132629312.
Chen
,
Z.
,
Shao
,
S. X.
,
Negahban
,
M.
, and
Li
,
Z.
, 2019
, “
Tunable Metasurface for Acoustic Wave Redirection, Focusing and Source Illusion
,” J. Phys. D Appl. Phys.
,
52
(39
), p. 395503
.10.1088/1361-6463/ab2abd313.
Zhang
,
C.
,
Cao
,
W. K.
,
Wu
,
L. T.
,
Ke
,
J. C.
,
Jing
,
Y.
,
Cui
,
T. J.
, and
Cheng
,
Q.
, 2021
, “
A Reconfigurable Active Acoustic Metalens
,” Appl. Phys. Lett.
,
118
(13
), p. 133502
.10.1063/5.0045024314.
Gong
,
K. M.
,
Wang
,
X. F.
,
Ouyang
,
H. J.
, and
Mo
,
J. L.
, 2019
, “
Tuneable Gradient Helmholtz-Resonator-Based Acoustic Metasurface for Acoustic Focusing
,” J. Phys. D Appl. Phys.
,
52
(38
), p. 385303
.10.1088/1361-6463/ab2b85315.
Tian
,
Z. H.
,
Shen
,
C.
,
Li
,
J. F.
,
Reit
,
E.
,
Gu
,
Y. Y.
,
Fu
,
H.
,
Cummer
,
S. A.
, and
Huang
,
T. J.
, 2019
, “
Programmable Acoustic Metasurfaces
,” Adv. Funct. Mater.
,
29
(13
), p. 1808489
.10.1002/adfm.201808489316.
Song
,
X. P.
,
Chen
,
T. N.
,
Zhu
,
J.
,
He
,
Y. Q.
, and
Liu
,
Z. Q.
, 2019
, “
Broadband Acoustic Cloaking and Disguising With Full-Rangle Incident Angles Based on Reconfigurable Metasurface
,” Int. J. Mod. Phys. B
,
33
(24
), p. 1950273
.10.1142/S0217979219502734317.
Song
,
X. P.
,
Chen
,
T. N.
, and
Zhu
,
J.
, 2019
, “
Acoustic Reprogrammable Metasurface for the Multi‐Frequency Tri‐Channel Retroreflector
,” Appl. Phys. A
,
125
(10
), p. 679
.10.1007/s00339-019-2967-0318.
Wang
,
X. L.
,
Yang
,
J.
,
Liang
,
B.
, and
Cheng
,
J. C.
, 2020
, “
Tunable Annular Acoustic Metasurface for Transmitted Wavefront Modulation
,” Appl. Phys. Express
,
13
(1
), p. 014002
.10.7567/1882-0786/ab59a5319.
Zhai
,
S. L.
,
Song
,
K.
,
Ding
,
C. L.
,
Wang
,
Y. B.
,
Dong
,
Y. B.
, and
Zhao
,
X. P.
, 2018
, “
Tunable Acoustic Metasurface With High-Q Spectrum Splitting
,” Materials
,
11
(10
), p. 1976
.10.3390/ma11101976320.
Zou
,
H.
,
Xu
,
Z.
,
Hu
,
Y.
,
Du
,
Q.
, and
Peng
,
P.
, 2022
, “
Reflected Continuously Tunable Acoustic Metasurface With Rotatable Space Coiling-Up Structure
,” Phys. Lett. A
,
426
, p. 127891
.10.1016/j.physleta.2021.127891321.
Chiang
,
Y. K.
,
Oberst
,
S.
,
Melnikov
,
A.
,
Quan
,
L.
,
Marburg
,
S.
,
Alù
,
A.
, and
Powell
,
D. A.
, 2020
, “
Reconfigurable Acoustic Metagrating for High Efficiency Anomalous Reflection
,” Phys. Rev. Appl.
,
13
, p. 064067
.10.1103/PhysRevApplied.13.064067322.
Xie
,
S. H.
,
Fang
,
X. S.
,
Li
,
P. Q.
,
Huang
,
S. B.
,
Peng
,
Y. G.
,
Shen
,
Y. X.
,
Li
,
Y.
, and
Zhu
,
X. F.
, 2020
, “
Tunable Double-Band Perfect Absorbers Via Acoustic Metasurfaces With Nesting Helical Tracks Chin
,” Phys. Lett.
,
37
(5
), p. 054301
.10.1088/0256-307X/37/5/054301323.
Fan
,
S. W.
,
Wang
,
Y. F.
,
Cao
,
L. Y.
,
Zhu
,
Y. F.
,
Chen
,
A. L.
,
Vincent
,
B.
,
Assouar
,
M. B.
, and
Wang
,
Y. S.
, 2020
, “
Acoustic Vortices With High-Order Orbital Angular Momentum by a Continuously Tunable Metasurface
,” Appl. Phys. Lett.
,
116
(16
), p. 163504
.10.1063/5.0007351324.
Yuan
,
B. G.
,
Cheng
,
Y.
, and
Liu
,
X. J.
, 2015
, “
Conversion of Sound Radiation Pattern Via Gradient Acoustic Metasurface With Space-Coiling Structure
,” Appl. Phys. Express
,
8
(2
), p. 027301
.10.7567/APEX.8.027301325.
Popa
,
B. I.
,
Shinde
,
D.
,
Konneker
,
A.
, and
Cummer
,
S. A.
, 2015
, “
Active Acoustic Metamaterials Reconfigurable in Real Time
,” Phys. Rev. B
,
91
(22
), p. 220303
.10.1103/PhysRevB.91.220303326.
Popa
,
B. I.
,
Zigoneanu
,
L.
, and
Cummer
,
S. A.
, 2013
, “
Tunable Active Acoustic Metamaterials
,” Phys. Rev. B
,
88
(2
), p. 024303
.10.1103/PhysRevB.88.024303327.
Popa
,
B. I.
, and
Cummer
,
S. A.
, 2014
, “
Non-Reciprocal and Highly Nonlinear Active Acoustic Metamaterials
,” Nat. Commun.
,
5
, p. 3398
.10.1038/ncomms4398328.
Li
,
S.
,
Xu
,
J.
,
Yao
,
Y.
, and
Tang
,
J.
, 2021
, “
Tunable Reflected Acoustic Wave Front Modulated With Piezoelectric Metasurfaces
,” J. Phys. D Appl. Phys.
,
54
(9
), p. 095102
.10.1088/1361-6463/abc917329.
Li
,
X.
,
Zhou
,
Y.
,
Yang
,
Z. Z.
,
Zou
,
X. Y.
, and
Cheng
,
J. C.
, 2022
, “
Tunable Acoustic Metasurface Based on PVDF/Polyimide Unimorph Sheets
,” Appl. Phys. Express
,
15
(1
), p. 014001
.10.35848/1882-0786/ac414b330.
Peng
,
Y. Y.
,
Chen
,
J. H.
,
Yang
,
Z. Z.
,
Zou
,
X. Y.
,
Tao
,
C.
, and
Cheng
,
J. C.
, 2022
, “
Broadband Tunable Acoustic Metasurface Based on Piezoelectric Composite Structure With Two Resonant Modes
,” Appl. Phys. Express
,
15
(1
), p. 014004
.10.35848/1882-0786/ac444a331.
Peng
,
Y. Y.
,
Yang
,
Z. Z.
,
Zhang
,
Z. L.
,
Zou
,
X. Y.
,
Tao
,
C.
, and
Cheng
,
J. C.
, 2022
, “
Tunable Acoustic Metasurface Based on Tunable Piezoelectric Composite Structure
,” J. Acoust. Soc. Am.
,
151
(2
), pp. 838
–845
.10.1121/10.0009379332.
Shen
,
Y. X.
,
Zhu
,
X. F.
,
Cai
,
F. Y.
,
Ma
,
T.
,
Li
,
F.
,
Xia
,
X. X.
,
Li
,
Y. C.
,
Wang
,
C. Z.
, and
Zheng
,
H. R.
, 2019
, “
Active Acoustic Metasurface: Complete Elimination of Grating Lobes for High-Quality Ultrasound Focusing and Controllable Steering
,” Phys. Rev. Appl.
,
11
, p. 034009
.10.1103/PhysRevApplied.11.034009333.
Li
,
S.
,
Xu
,
J.
, and
Tang
,
J.
, 2018
, “
Tunable Modulation of Refracted Lamb Wave Front Facilitated by Adaptived Elastic Metasurfaces
,” Appl. Phys. Lett.
,
112
(2
), p. 021903
.10.1063/1.5011675334.
Ma
,
G. C.
,
Fan
,
X. Y.
,
Sheng
,
P.
, and
Fink
,
M.
, 2018
, “
Shaping Reverberating Sound Fields With an Actively Tunable Metasurface
,” Proc. Natl. Acad. Sci. U. S. A.
,
115
(26
), pp. 6638
–6643
.10.1073/pnas.1801175115335.
Zhang
,
S. Z.
,
Shu
,
S. W.
, and
Bian
,
X. H.
, 2022
, “
Tunability for Anomalous Refraction of Flexural Wave in a Magneto-Elastic Metasurface by Magnetic Field and Pre-Stress
,” Appl. Phys. Express
,
15
(2
), p. 027003
.10.35848/1882-0786/ac4925336.
Giovampaola
,
C. D.
, and
Engheta
,
N.
, 2014
, “
Digital Metamaterials
,” Nat. Mater.
,
13
(12
), pp. 1115
–1121
.10.1038/nmat4082337.
Cui
,
T. J.
,
Qi
,
M. Q.
,
Wan
,
X.
,
Zhao
,
J.
, and
Cheng
,
Q.
, 2014
, “
Coding Metamaterials, Digital Metamaterials and Programmable Metamaterials
,” Light Sci. Appl.
,
3
(10
), pp. e218
–e218
.10.1038/lsa.2014.99338.
Gao
,
L. H.
,
Cheng
,
Q.
,
Yang
,
J.
,
Ma
,
S. J.
,
Zhao
,
J.
,
Liu
,
S.
,
Chen
,
H. B.
, et al., 2015
, Broadband Diffusion of Terahertz Waves by Multi-Bit Coding Metasurfaces,” Light Sci. Appl.
,
4
(9
), p. e324
.10.1038/lsa.2015.97339.
Fan
,
X. D.
,
Zhu
,
Y. F.
,
Liang
,
B.
,
Yang
,
J.
, and
Cheng
,
J. C.
, 2016
, “
Broadband Convergence of Acoustic Energy With Binary Reflected Phases on Planar Surface
,” Appl. Phys. Lett.
,
109
(24
), p. 243501
.10.1063/1.4971795340.
Xie
,
B. Y.
,
Cheng
,
H.
,
Tang
,
K.
,
Liu
,
Z. Y.
,
Chen
,
S. Q.
, and
Tian
,
J. G.
, 2017
, “
Multiband Asymmetric Transmission of Airborne Sound by Coded Metasurfaces
,” Phys. Rev. Appl.
,
7
(2
), p. 024010
.10.1103/PhysRevApplied.7.024010341.
Cao
,
W. K.
,
Wu
,
L. T.
,
Zhang
,
C.
,
Ke
,
J. C.
,
Cheng
,
Q.
, and
Cui
,
T. J.
, 2019
, “
A Reflective Acoustic Meta-Diffuser Based on the Coding Meta-Surface
,” J. Appl. Phys.
,
126
(19
), p. 194503
.10.1063/1.5120111342.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wu
,
D. J.
, and
Liu
,
X. J.
, 2019
, “
Broadband Airy-Like Beams by Coded Acoustic Metasurfaces
,” Appl. Phys. Lett.
,
114
(5
), p. 053504
.10.1063/1.5080202343.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wei
,
Q.
,
Yao
,
J.
, and
Wu
,
D. J.
, 2020
, “
Broadband Tunable Focusing Lenses by Acoustic Coding Metasurfaces
,” J. Phys. D Appl. Phys.
,
53
(25
), p. 255501
.10.1088/1361-6463/ab8247344.
Li
,
W. B.
,
Meng
,
F.
, and
Huang
,
X. D.
, 2020
, “
Coding Metalens With Helical-Structured Units for Acoustic Focusing and Splitting
,” Appl. Phys. Lett.
,
117
(2
), p. 021901
.10.1063/5.0012784345.
Zhang
,
N. L.
,
Zhao
,
S. D.
,
Dong
,
H. W.
,
Wang
,
Y. S.
, and
Zhang
,
C.
, 2022
, “
Reflection-Type Broadband Acoustic Coding Metasurfaces for Acoustic Focusing and Splitting
,” Appl. Phys. Lett.
,
120
(14
), p. 142201
.10.1063/5.0087339346.
Fang
,
X. S.
,
Wang
,
X.
, and
Li
,
Y.
, 2019
, “
Acoustic Splitting and Bending With Compact Coding Metasurfaces
,” Phys. Rev. Appl.
,
11
(6
), p. 064033
.10.1103/PhysRevApplied.11.064033347.
Zuo
,
S. Y.
,
Tian
,
Y.
,
Cheng
,
Y.
,
Deng
,
M. X.
,
Hu
,
N.
, and
Liu
,
X. J.
, 2019
, “
Asymmetric Coding Metasurfaces for the Controllable Projection of Acoustic Images
,” Phys. Rev. Mater.
,
3
, p. 065204
.10.1103/PhysRevMaterials.3.065204348.
Su
,
G. Y.
, and
Liu
,
Y. Q.
, 2020
, “
Amplitude-Modulated Binary Acoustic Metasurface for Perfect Anomalous Refraction
,” Appl. Phys. Lett.
,
117
(22
), p. 221901
.10.1063/5.0032509349.
Zhang
,
Y.
,
Cheng
,
H.
,
Tian
,
J. G.
, and
Chen
,
S. Q.
, 2020
, “
Frequency-Selected Bifunctional Coding Acoustic Metasurfaces
,” Phys. Rev. Appl.
,
14
(6
), p. 064057
.10.1103/PhysRevApplied.14.064057350.
Song
,
X. P.
,
Chen
,
T. N.
,
Huang
,
W. K.
, and
Chen
,
C.
, 2021
, “
Frequency-Selective Modulation of Reflected Wave Fronts Using a Four-Mode Coding Acoustic Metasurface
,” Phys. Lett. A
,
394
, p. 127145
.10.1016/j.physleta.2021.127145351.
Tang
,
H. C.
,
Chen
,
Z. S.
,
Tang
,
N.
,
Li
,
S. F.
,
Shen
,
Y. X.
,
Peng
,
Y. G.
,
Zhu
,
X. F.
, and
Zang
,
J. F.
, 2018
, “
Hollow-Out Patterning Ultrathin Acoustic Metasurfaces for Multifunctionalities Using Soft Fiber/Rigid Bead Networks
,” Adv. Funct. Mater.
,
28
(36
), p. 1801127
.10.1002/adfm.201801127352.
Tang
,
H. C.
,
Hao
,
Z. Q.
, and
Zang
,
J. F.
, 2019
, “
Nonplanar Acoustic Metasurface for Focusing
,” J. Appl. Phys.
,
125
(15
), p. 154901
.10.1063/1.5082670353.
Fu
,
Y. Y.
,
Cao
,
Y. Y.
, and
Xu
,
Y. D.
, 2019
, “
Multifunctional Reflection in Acoustic Metagratings With Simplified Design
,” Appl. Phys. Lett.
,
114
(5
), p. 053502
.10.1063/1.5083081354.
Zhu
,
X. F.
, and
Lau
,
S. K.
, 2019
, “
Perfect Anomalous Reflection and Refraction With Binary Acoustic Metasurfaces
,” J. Appl. Phys.
,
126
(22
), p. 224504
.10.1063/1.5124040355.
Chen
,
S.
,
Fan
,
Y. C.
,
Fan
,
Y.
,
Sun
,
K. Y.
,
Fu
,
Q. H.
,
Zheng
,
J. B.
, and
Zhang
,
F. L.
, 2021
, “
Coiling-Up Space Metasurface for High-Efficient and Wide-Angle Acoustic Wavefront Steering
,” Front. Mater.
,
8
, p. 790987
.10.3389/fmats.2021.790987356.
Gao
,
H.
,
Gu
,
Z. M.
,
Liang
,
S. J.
,
An
,
S. W.
,
Liu
,
T.
, and
Zhu
,
J.
, 2020
, “
Coding Metasurface for Talbot Sound Amplification
,” Phys. Rev. Appl.
,
14
(5
), p. 054067
.10.1103/PhysRevApplied.14.054067357.
Zhao
,
S. D.
,
Dong
,
H. W.
,
Miao
,
X. B.
,
Wang
,
Y. S.
, and
Zhang
,
C.
, 2022
, “
Broadband Programmable Coding Metasurfaces With 2-Bit Manipulations
,” Phys. Rev. Appl.
,
17
(3
), p. 034019
.10.1103/PhysRevApplied.17.034019358.
Zhang
,
Y.
,
Xie
,
B. Y.
,
Liu
,
W. W.
,
Cheng
,
H.
,
Chen
,
S. Q.
, and
Tian
,
J. G.
, 2019
, “
Anomalous Reflection and Vortex Beam Generation by Multi-Bit Coding Acoustic Metasurfaces
,” Appl. Phys. Lett.
,
114
(9
), p. 091905
.10.1063/1.5087636359.
Bai
,
G. D.
,
Ma
,
Q.
,
Cao
,
W. K.
,
Li
,
R. Q.
,
Jing
,
H. B.
,
Mu
,
J.
,
Bao
,
L.
,
Wu
,
R. Y.
,
Zhang
,
C.
,
Wan
,
X.
,
Cheng
,
Q.
, and
Cui
,
T. J.
, 2019
, “
Manipulation of Electromagnetic and Acoustic Wave Behaviors Via Shared Digital Coding Metallic Metasurfaces
,” Adv. Intell. Syst.
,
1
(5
), p. 1900038
.10.1002/aisy.201900038360.
Fakheri
,
M. H.
,
Rajabalipanah
,
H.
, and
Abdolali
,
A.
, 2021
, “
Spatiotemporal Binary Acoustic Metasurfaces
,” Phys. Rev. Appl.
,
16
, p. 024062
.10.1103/PhysRevApplied.16.024062361.
Cao
,
W. K.
,
Zhang
,
C.
,
Wu
,
L. T.
,
Guo
,
K. Q.
,
Ke
,
J. C.
,
Cui
,
T. J.
, and
Cheng
,
Q.
, 2021
, “
Tunable Acoustic Metasurface for Three-Dimensional Wave Manipulations
,” Phys. Rev. Appl.
,
15
, p. 024026
.10.1103/PhysRevApplied.15.024026362.
Yu
,
G. K.
,
Qiu
,
Y. P.
,
Li
,
Y.
,
Wang
,
X. L.
, and
Wang
,
N.
, 2021
, “
Underwater Acoustic Stealth by a Broadband 2-Bit Coding Metasurface
,” Phys. Rev. Appl.
,
15
, p. 064064
.10.1103/PhysRevApplied.15.064064363.
Li
,
X. S.
,
Wang
,
Y. F.
, and
Wang
,
Y. S.
, 2022
, “
Sparse Binary Metasurfaces for Steering the Flexural Waves
,” Extreme Mech. Lett.
,
52
, p. 101675
.10.1016/j.eml.2022.101675364.
Yaw
,
Z.
,
Zhou
,
W. J.
,
Chen
,
Z. Y.
, and
Lim
,
C. W.
, 2021
, “
Stiffness Tuning of a Functional-Switchable Active Coding Elastic Metasurface
,” Int. J. Mech. Sci.
,
207
, p. 106654
.10.1016/j.ijmecsci.2021.106654365.
Sun
,
H. T.
,
Wang
,
J. S.
,
Cheng
,
Y.
,
Wei
,
Q.
, and
Liu
,
X. J.
, 2016
, “
Modulation of Water Surface Waves With a Coiling-Up-Space Metasurface
,” AIP Adv.
,
6
(5
), p. 055017
.10.1063/1.4950962366.
Chaplain
,
G. J.
, and
De Ponti
,
J. M.
, 2022
, “
The Elastic Spiral Phase Pipe
,” J. Sound Vib.
,
523
, p. 116718
.10.1016/j.jsv.2021.116718367.
Dong
,
H. W.
,
Zhao
,
S. D.
,
Oudich
,
M.
,
Shen
,
C.
,
Ch
,
Z.
,
Cheng
,
L.
,
Wang
,
Y. S.
, and
Fang
,
D. N.
, 2022
, “
Reflective Metasurfaces With Multiple Elastic Mode Conversions for Broadband Underwater Sound Absorption
,” Phys. Rev. Appl.
,
17
, p. 044013
.10.1103/PhysRevApplied.17.044013368.
Zhang
,
H.
,
Wei
,
Z.
,
Fan
,
L.
,
Qu
,
J.
, and
Zhang
,
S. Y.
, 2016
, “
Tunable Sound Transmission at Impedance-Mismatched Fluidic Interface Assisted by a Composite Waveguide
,” Sci. Rep.
,
6
, p. 34688
.10.1038/srep34688369.
Lee
,
T.
, and
Iizuka
,
H.
, 2020
, “
Sound Propagation Across the Air/Water Interface by a Critically Coupled Resonant Bubble
,” Phys. Rev. B
,
102
(10
), p. 104105
.10.1103/PhysRevB.102.104105370.
Bok
,
E.
,
Park
,
J. J.
,
Choi
,
H.
,
Han
,
C. K.
,
Wright
,
O. B.
, and
Lee
,
S. H.
, 2018
, “
Metasurface for Water-to-Air Sound Transmission
,” Phys. Rev. Lett.
,
120
(4
), p. 044302
.10.1103/PhysRevLett.120.044302371.
Cai
,
Z. R.
,
Zhao
,
S. D.
,
Huang
,
Z. D.
,
Li
,
Z.
,
Su
,
M.
,
Zhang
,
Z. Y.
,
Zhao
,
Z. P.
,
Hu
,
X. T.
,
Wang
,
Y. S.
, and
Song
,
Y. L.
, 2019
, “
Bubble Architectures for Locally Resonant Acoustic Metamaterials
,” Adv. Funct. Mater.
,
29
(51
), p. 1906984
.10.1002/adfm.201906984372.
Park
,
C.
, Il
,
Piao
,
C. G.
,
Lee
,
H.
, and
Kim
,
Y. Y.
, 2021
, “
Elastic Complementary Meta-Layer for Ultrasound Penetration Through Solid/Liquid/Gas Barriers
,” Int. J. Mech. Sci.
,
206
, p. 106619
.10.1016/j.ijmecsci.2021.106619373.
Lee
,
S. W.
,
Shin
,
Y. J.
,
Park
,
H. W.
,
Seung
,
H. M.
, and
Oh
,
J. H.
, 2021
, “
Full-Wave Tailoring Between Different Elastic Media: A Double-Unit Elastic Metasurface
,” Phys. Rev. Appl.
,
16
, p. 064013
.10.1103/PhysRevApplied.16.064013374.
Zhang
,
X.
,
Ma
,
J. Y.
,
Li
,
M. Y.
,
You
,
Z.
,
Wang
,
X. Y.
,
Luo
,
Y.
,
Ma
,
K. X.
, and
Chen
,
Y.
, 2022
, “
Kirigami-Based Metastructures With Programmable Multistability
,” Proc. Natl. Acad. Sci.
,
119
(11
), p. e2117649119
.10.1073/pnas.2117649119375.
Weng
,
J. K.
,
Ding
,
Y. J.
,
Hu
,
C. B.
,
Zhu
,
X. F.
,
Liang
,
B.
,
Yang
,
J.
, and
Cheng
,
J. C.
, 2020
, “
Meta-Neural-Network for Real-Time and Passive Deep-Learning-Based Object Recognition
,” Nat. Commun.
,
11
(1
), p. 6309
.10.1038/s41467-020-19693-x376.
Lin
,
Q.
,
Wang
,
J. Q.
,
Cai
,
F. Y.
,
Zhang
,
R. J.
,
Zhao
,
D. G.
,
Xia
,
X. X.
,
Wang
,
J. P.
, and
Zheng
,
H. R.
, 2021
, “
A Deep Learning Approach for the Fast Generation of Acoustic Holograms
,” J. Acoust. Soc. Am.
,
149
(4
), pp. 2312
–2322
.10.1121/10.0003959377.
Donda
,
K.
,
Zhu
,
Y. F.
,
Merkel
,
A.
,
Fan
,
S. W.
,
Cao
,
L. Y.
,
Wan
,
S.
, and
Assouar
,
B.
, 2021
, “
Ultrathin Acoustic Absorbing Metasurface Based on Deep Learning Approach
,” Smart Mater. Struct.
,
30
(8
), p. 085003
.10.1088/1361-665X/ac0675378.
Ding
,
H.
,
Fang
,
X. S.
,
Jia
,
B.
,
Wang
,
N. Y.
,
Cheng
,
Q.
, and
Li
,
Y.
, 2021
, “
Deep Learning Enables Accurate Sound Redistribution Via Nonlocal Metasurfaces
,” Phys. Rev. Appl.
,
16
, p. 064035
.10.1103/PhysRevApplied.16.064035