Abstract

Metallic glasses (MGs) are often perceived as quintessential structural materials due to their superior mechanical properties such as high strength and large elastic limit. In practical applications, service conditions that introduce cyclic variations in stresses and strains are inevitably involved. The fatigue of MGs is thus a topic of research and practical interest. In this review, a brief introduction on MGs, their applications and challenges, is first provided. Next, experimental studies on fatigue behaviors of both macroscopic and nanoscale MGs are summarized. The range of topics covered include the stress-life behavior, fatigue-crack growth behavior, fatigue-fracture morphology, fatigue-failure mechanisms, as well as the effects of chemical composition, cycling frequency, loading condition, and sample size on the fatigue limits. Finally, recent progresses in simulation studies on the fatigue of MGs are discussed, with an emphasis placed on the atomic-level understanding of the fatigue mechanisms.

References

References
1.
Wang
,
W. H.
,
Dong
,
C.
, and
Shek
,
C. H.
,
2004
, “
Bulk Metallic Glasses
,”
Mater. Sci. Eng.
,
44
(
2–3
), pp.
45
89
.10.1016/j.mser.2004.03.001
2.
Schuh
,
C. A.
,
Hufnagel
,
T. C.
, and
Ramamurty
,
U.
,
2007
, “
Mechanical Behavior of Amorphous Alloys
,”
Acta Mater.
,
55
(
12
), pp.
4067
4109
.10.1016/j.actamat.2007.01.052
3.
Trexler
,
M. M.
, and
Thadhani
,
N. N.
,
2010
, “
Mechanical Properties of Bulk Metallic Glasses
,”
Prog. Mater. Sci.
,
55
(
8
), pp.
759
839
.10.1016/j.pmatsci.2010.04.002
4.
Li
,
Y.
,
Guo
,
Q.
,
Kalb
,
J. A.
, and
Thompson
,
C. V.
,
2008
, “
Matching Glass-Forming Ability With the Density of the Amorphous Phase
,”
Science
,
322
(
5909
), pp.
1816
1819
.10.1126/science.1163062
5.
Hofmann
,
D. C.
,
Andersen
,
L. M.
,
Kolodziejska
,
J.
,
Roberts
,
S. N.
,
Borgonia
,
J. P.
,
Johnson
,
W. L.
,
Vecchio
,
K. S.
, and
Kennett
,
A.
,
2017
, “
Optimizing Bulk Metallic Glasses for Robust, Highly Wear-Resistant Gears
,”
Adv. Eng. Mater.
,
19
(
1
), p.
1600541
.10.1002/adem.201600541
6.
Gloriant
,
T.
,
2003
, “
Microhardness and Abrasive Wear Resistance of Metallic Glasses and Nanostructured Composite Materials
,”
J. Non-Cryst. Solids
,
316
(
1
), pp.
96
103
.10.1016/S0022-3093(02)01941-5
7.
Fornell
,
J.
,
Steenberge
,
N. V.
,
Varea
,
A.
,
Rossinyol
,
E.
,
Pellicer
,
E.
,
Suriñach
,
S.
,
Baró
,
M. D.
, and
Sort
,
J.
,
2011
, “
Enhanced Mechanical Properties and In Vitro Corrosion Behavior of Amorphous and Devitrified Ti40Zr10Cu38Pd12 Metallic Glass
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1709
1717
.10.1016/j.jmbbm.2011.05.028
8.
Si
,
J. J.
,
Chen
,
X. H.
,
Cai
,
Y. H.
,
Wu
,
Y. D.
,
Wang
,
T.
, and
Hui
,
X.
,
2016
, “
Corrosion Behavior of Cr-Based Bulk Metallic Glasses in Hydrochloric Acid Solutions
,”
Corros. Sci.
,
107
, pp.
123
132
.10.1016/j.corsci.2016.02.026
9.
Wang
,
W. H.
,
2009
, “
Bulk Metallic Glasses With Functional Physical Properties
,”
Adv. Mater.
,
21
(
45
), pp.
4524
4544
.10.1002/adma.200901053
10.
Johnson
,
W. L.
, and
Plummer
,
J.
,
2015
, “
Is Metallic Glass Poised to Come of Age?
,”
Nat. Mater.
,
14
(
6
), pp.
553
555
.10.1038/nmat4297
11.
Klement
,
W.
,
Willens
,
R. H.
, and
Duwez
,
P. O. L.
,
1960
, “
Non-Crystalline Structure in Solidified Gold-Silicon Alloys
,”
Nature
,
187
(
4740
), pp.
869
870
.10.1038/187869b0
12.
Chen
,
H. S.
,
1974
, “
Thermodynamic Considerations on the Formation and Stability of Metallic Glasses
,”
Acta Metall.
,
22
(
12
), pp.
1505
1511
.10.1016/0001-6160(74)90112-6
13.
Drehman
,
A. J.
,
Greer
,
A. L.
, and
Turnbull
,
D.
,
1982
, “
Bulk Formation of a Metallic Glass: Pd40Ni40P20
,”
Appl. Phys. Lett.
,
41
(
8
), pp.
716
717
.10.1063/1.93645
14.
Kui
,
H. W.
,
Greer
,
A. L.
, and
Turnbull
,
D.
,
1984
, “
Formation of Bulk Metallic Glass by Fluxing
,”
Appl. Phys. Lett.
,
45
(
6
), pp.
615
616
.10.1063/1.95330
15.
Chen
,
H. S.
,
1980
, “
Glassy Metals
,”
Rep. Prog. Phys.
,
43
(
4
), pp.
353
432
.10.1088/0034-4885/43/4/001
16.
Inoue
,
A.
,
2015
, “
Bulk Glassy Alloys: Historical Development and Current Research
,”
Engineering
,
1
(
2
), pp.
185
191
.10.15302/J-ENG-2015038
17.
Peker
,
A.
, and
Johnson
,
W. L.
,
1993
, “
A Highly Processable Metallic Glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5
,”
Appl. Phys. Lett.
,
63
(
17
), pp.
2342
2344
.10.1063/1.110520
18.
Inoue
,
A.
,
Nishiyama
,
N.
, and
Matsuda
,
T.
,
1996
, “
Preparation of Bulk Glassy Pd40Ni10Cu30P20 Alloy of 40 mm in Diameter by Water Quenching
,”
Mater. Trans.
,
37
(
2
), pp.
181
184
.10.2320/matertrans1989.37.181
19.
Inoue
,
A.
,
Nishiyama
,
N.
, and
Kimura
,
H.
,
1997
, “
Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter
,”
Mater. Trans.
,
38
(
2
), pp.
179
183
.10.2320/matertrans1989.38.179
20.
Nishiyama
,
N.
,
Takenaka
,
K.
,
Miura
,
H.
,
Saidoh
,
N.
,
Zeng
,
Y.
, and
Inoue
,
A.
,
2012
, “
The World's Biggest Glassy Alloy Ever Made
,”
Intermetallics
,
30
, pp.
19
24
.10.1016/j.intermet.2012.03.020
21.
Kruzic
,
J. J.
,
2016
, “
Bulk Metallic Glasses as Structural Materials: A Review
,”
Adv. Eng. Mater.
,
18
(
8
), pp.
1308
1331
.10.1002/adem.201600066
22.
Ashby
,
M. F.
, and
Greer
,
A. L.
,
2006
, “
Metallic Glasses as Structural Materials
,”
Scr. Mater.
,
54
(
3
), pp.
321
326
.10.1016/j.scriptamat.2005.09.051
23.
Zhu
,
Z.
,
Zhang
,
H.
,
Pan
,
D.
,
Sun
,
W.
, and
Hu
,
Z.
,
2006
, “
Fabrication of Binary Ni‐Nb Bulk Metallic Glass With High Strength and Compressive Plasticity
,”
Adv. Eng. Mater.
,
8
(
10
), pp.
953
957
.10.1002/adem.200600105
24.
Wu
,
F. F.
,
Chan
,
K. C.
,
Jiang
,
S. S.
,
Chen
,
S. H.
, and
Gang
,
W.
,
2014
, “
Bulk Metallic Glass Composite With Good Tensile Ductility, High Strength and Large Elastic Strain Limit
,”
Sci. Rep.
,
4
(
24
), p.
5302
.10.1038/srep05302
25.
Chu
,
J. P.
,
Yu
,
C. C.
,
Tanatsugu
,
Y.
,
Yasuzawa
,
M.
, and
Shen
,
Y. L.
,
2016
, “
Non-Stick Syringe Needles: Beneficial Effects of Thin Film Metallic Glass Coating
,”
Sci. Rep.
,
6
, p.
31847
.10.1038/srep31847
26.
Akihisa
,
I.
,
Baolong
,
S.
,
Hisato
,
K.
,
Hidemi
,
K.
, and
Yavari
,
A. R.
,
2003
, “
Cobalt-Based Bulk Glassy Alloy With Ultrahigh Strength and Soft Magnetic Properties
,”
Nat. Mater.
,
2
(
10
), pp.
661
663
.10.1038/nmat982
27.
Wang
,
J.
,
Li
,
R.
,
Hua
,
N.
,
Huang
,
L.
, and
Zhang
,
T.
,
2011
, “
Ternary Fe-P-C Bulk Metallic Glass With Good Soft-Magnetic and Mechanical Properties
,”
Scr. Mater.
,
65
(
6
), pp.
536
539
.10.1016/j.scriptamat.2011.06.020
28.
Shi
,
M.
,
Liu
,
Z.
, and
Tao
,
Z.
,
2015
, “
Effects of Metalloid B Addition on the Glass Formation, Magnetic and Mechanical Properties of FePCB Bulk Metallic Glasses
,”
J. Mater. Sci. Technol.
,
31
(
5
), pp.
493
497
.10.1016/j.jmst.2014.10.009
29.
Golden
,
K.
,
Amish
,
D.
, and
Jan
,
S.
,
2011
, “
Bulk Metallic Glass: The Smaller the Better
,”
Adv. Mater.
,
23
(
4
), pp.
461
476
.10.1002/adma.201002148
30.
Singer
,
J. P.
,
Pelligra
,
C. I.
,
Kornblum
,
N.
,
Choo
,
Y.
,
Gopinadhan
,
M.
,
Bordeenithikasem
,
P.
,
Ketkaew
,
J.
,
Seng
,
F. L.
,
Hui
,
C.
, and
Schroers
,
J.
,
2015
, “
Multiscale Patterning of a Metallic Glass Using Sacrificial Imprint Lithography
,”
Microsyst. Nanoeng.
,
1
, p.
15040
.10.1038/micronano.2015.40
31.
Liu
,
Y.
,
Liu
,
J.
,
Sohn
,
S.
,
Li
,
Y.
,
Cha
,
J. J.
, and
Schroers
,
J.
,
2015
, “
Metallic Glass Nanostructures of Tunable Shape and Composition
,”
Nat. Commun.
,
6
, p.
7043
.10.1038/ncomms8043
32.
Johnson
,
W. L.
,
1999
, “
Bulk Glass-Forming Metallic Alloys: Science and Technology
,”
MRS Bull.
,
24
(
10
), pp.
42
56
.10.1557/S0883769400053252
33.
Kakiuchi
,
H.
,
Inoue
,
A.
,
Onuki
,
M.
,
Takano
,
Y.
, and
Yamaguchi
,
T.
,
2001
, “
Application of Zr-Based Bulk Glassy Alloys to Golf Clubs
,”
Mater. Trans.
,
42
(
4
), pp.
678
681
.10.2320/matertrans.42.678
34.
Jurewicz
,
A. J. G.
,
Burnett
,
D. S.
,
Wiens
,
R. C.
,
Friedmann
,
T. A.
,
Hays
,
C. C.
,
Hohlfelder
,
R. J.
,
Nishiizumi
,
K.
,
Stone
,
J. A.
,
Woolum
,
D. S.
,
Becker
,
R.
,
Butterworth
,
A. L.
,
Campbell
,
A. J.
,
Ebihara
,
M.
,
Franchi
,
I. A.
,
Heber
,
V.
,
Hohenberg
,
C. M.
,
Humayun
,
M.
,
McKeegan
,
K. D.
,
McNamara
,
K.
,
Meshik
,
A.
,
Pepin
,
R. O.
,
Schlutter
,
D.
, and
Wieler
,
R.
,
2003
, “
The Genesis Solar-Wind Collector Materials
,”
Space Sci. Rev.
,
105
(
3/4
), pp.
535
560
.10.1023/A:1024469927444
35.
Burnett
,
D. S.
,
Barraclough
,
B. L.
,
Bennett
,
R.
,
Neugebauer
,
M.
,
Oldham
,
L. P.
,
Sasaki
,
C. N.
,
Sevilla
,
D.
,
Smith
,
N.
,
Stansbery
,
E.
,
Sweetnam
,
D.
, and
Wiens
,
R. C.
,
2003
, “
The Genesis Discovery Mission: Return of Solar Matter to Earth
,”
Space Sci. Rev.
,
105
(
3/4
), pp.
509
534
.10.1023/A:1024425810605
36.
Grimberg
,
A.
,
Baur
,
H.
,
Bochsler
,
P.
,
Buhler
,
F.
,
Burnett
,
D. S.
,
Hays
,
C. C.
,
Heber
,
V. S.
,
Jurewicz
,
A. J. G.
, and
Wieler
,
R.
,
2006
, “
Solar Wind Neon From Genesis: Implications for the Lunar Noble Gas Record
,”
Science
,
314
(
5802
), pp.
1133
1135
.10.1126/science.1133568
37.
Inoue
,
A.
,
2009
,
New Functional Materials, Fundamentals of Metallic Glasses and Their Applications to Industry
,
Techno System
, Tokyo, Japan.
38.
Tiberto
,
P.
,
Baricco
,
M.
,
Olivetti
,
E.
, and
Piccin
,
R.
,
2007
, “
Magnetic Properties of Bulk Metallic Glasses
,”
Adv. Eng. Mater.
,
9
(
6
), pp.
468
474
.10.1002/adem.200700050
39.
Inoue
,
A.
,
Kong
,
F. L.
,
Man
,
Q. K.
,
Shen
,
B. L.
,
Li
,
R. W.
, and
Al-Marzouki
,
F.
,
2014
, “
Development and Applications of Fe- and Co-Based Bulk Glassy Alloys and Their Prospects
,”
J. Alloys Compd.
,
615
, pp.
S2
S8
.10.1016/j.jallcom.2013.11.122
40.
Khan
,
M. M.
,
Nemati
,
A.
,
Rahman
,
Z. U.
,
Shah
,
U. H.
,
Asgar
,
H.
, and
Haider
,
W.
,
2018
, “
Recent Advancements in Bulk Metallic Glasses and Their Applications: A Review
,”
Crit. Rev. Solid State Mater. Sci.
,
43
(
3
), pp.
233
268
.10.1080/10408436.2017.1358149
41.
An
,
B. W.
,
Gwak
,
E. J.
,
Kim
,
K.
,
Kim
,
Y. C.
,
Jang
,
J.
,
Kim
,
J. Y.
, and
Park
,
J. U.
,
2016
, “
Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses With Superior Mechanical Properties and Thermal Stability
,”
Nano Lett.
,
16
(
1
), pp.
471
478
.10.1021/acs.nanolett.5b04134
42.
Das
,
S.
,
Garrison
,
S.
, and
Mukherjee
,
S.
,
2016
, “
Bi-Functional Mechanism in Degradation of Toxic Water Pollutants by Catalytic Amorphous Metals
,”
Adv. Eng. Mater.
,
18
(
2
), pp.
214
218
.10.1002/adem.201500239
43.
Monfared
,
A.
,
Vali
,
H.
, and
Faghihi
,
S.
,
2013
, “
Biocorrosion and Biocompatibility of Zr-Cu-Fe-Al Bulk Metallic Glasses
,”
Surf. Interface Anal.
,
45
(
11–12
), pp.
1714
1720
.10.1002/sia.5312
44.
Vincent
,
S.
,
Daiwile
,
A.
,
Devi
,
S. S.
,
Kramer
,
M. J.
,
Besser
,
M. F.
,
Murty
,
B. S.
, and
Bhatt
,
J.
,
2015
, “
Bio-Corrosion and Cytotoxicity Studies on Novel Zr55Co30Ti15 and Cu60Zr20Ti20 Metallic Glasses
,”
Metall. Mater. Trans. A
,
46
(
6
), pp.
2422
2430
.10.1007/s11661-014-2574-9
45.
Meagher
,
P.
,
O'Cearbhaill
,
E. D.
,
Byrne
,
J. H.
, and
Browne
,
D. J.
,
2016
, “
Bulk Metallic Glasses for Implantable Medical Devices and Surgical Tools
,”
Adv. Mater.
,
28
(
27
), pp.
5755
5762
.10.1002/adma.201505347
46.
Wang
,
Y. B.
,
Li
,
H. F.
,
Cheng
,
Y.
,
Zheng
,
Y. F.
, and
Ruan
,
L. Q.
,
2013
, “
In Vitro and In Vivo Studies on Ti-Based Bulk Metallic Glass as Potential Dental Implant Material
,”
Mater. Sci. Eng., C
,
33
(
6
), pp.
3489
3497
.10.1016/j.msec.2013.04.038
47.
Li
,
H. F.
, and
Zheng
,
Y. F.
,
2016
, “
Recent Advances in Bulk Metallic Glasses for Biomedical Applications
,”
Acta Biomater.
,
36
, pp.
1
20
.10.1016/j.actbio.2016.03.047
48.
Conner
,
R. D.
,
Choi-Yim
,
H.
, and
Johnson
,
W. L.
,
1999
, “
Mechanical Properties of Zr57Nb5Al10Cu15.4Ni12.6 Metallic Glass Matrix Particulate Composites
,”
J. Mater. Res.
,
14
(
8
), pp.
3292
3297
.10.1557/JMR.1999.0445
49.
Dai
,
L. H.
,
Yan
,
M.
,
Liu
,
L. F.
, and
Bai
,
Y. L.
,
2005
, “
Adiabatic Shear Banding Instability in Bulk Metallic Glasses
,”
Appl. Phys. Lett.
,
87
(
14
), p.
141916
.10.1063/1.2067691
50.
Hofmann
,
D. C.
,
Suh
,
J.-Y.
,
Wiest
,
A.
,
Duan
,
G.
,
Lind
,
M.-L.
,
Demetriou
,
M. D.
, and
Johnson
,
W. L.
,
2008
, “
Designing Metallic Glass Matrix Composites With High Toughness and Tensile Ductility
,”
Nature
,
451
(
7182
), pp.
1085
1089
.10.1038/nature06598
51.
Cheng
,
Y. Q.
,
Cao
,
A. J.
,
Sheng
,
H. W.
, and
Ma
,
E.
,
2008
, “
Local Order Influences Initiation of Plastic Flow in Metallic Glass: Effects of Alloy Composition and Sample Cooling History
,”
Acta Mater.
,
56
(
18
), pp.
5263
5275
.10.1016/j.actamat.2008.07.011
52.
Xu
,
J.
,
Ramamurty
,
U.
, and
Ma
,
E.
,
2010
, “
The Fracture Toughness of Bulk Metallic Glasses
,”
JOM
,
62
(
4
), pp.
10
18
.10.1007/s11837-010-0052-4
53.
Zhong
,
C.
,
Zhang
,
H.
,
Cao
,
Q. P.
,
Wang
,
X. D.
,
Zhang
,
D. X.
,
Hu
,
J. W.
,
Liaw
,
P. K.
, and
Jiang
,
J. Z.
,
2016
, “
Non-Localized Deformation in CuZr Multi-Layer Amorphous Films Under Tension
,”
J. Alloys Compd.
,
678
, pp.
410
420
.10.1016/j.jallcom.2016.03.305
54.
Qiao
,
D. C.
,
Fan
,
G. J.
,
Liaw
,
P. K.
, and
Choo
,
H.
,
2007
, “
Fatigue Behaviors of the Cu47.5Zr47.5Al5 Bulk-Metallic Glass (Bmg) and Cu47.5Zr38Hf9.5Al5 Bmg Composite
,”
Int. J. Fatigue
,
29
(
12
), pp.
2149
2154
.10.1016/j.ijfatigue.2007.01.009
55.
Qiao
,
D. C.
,
Wang
,
G. Y.
,
Liaw
,
P. K.
,
Ponnambalam
,
V.
,
Poon
,
S. J.
, and
Shiflet
,
G. J.
,
2007
, “
Fatigue Behavior of an Fe48Cr15Mo14Er2C15B6 Amorphous Steel
,”
J. Mater. Res.
,
22
(
2
), pp.
544
550
.10.1557/jmr.2007.0047
56.
Gilbert
,
C. J.
,
Lippmann
,
J. M.
, and
Ritchie
,
R. O.
,
1998
, “
Fatigue of a Zr-Ti-Cu-Ni-Be Bulk Amorphous Metal: Stress/Life and Crack-Growth Behavior
,”
Scr. Mater.
,
38
(
4
), pp.
537
542
.10.1016/S1359-6462(97)00522-8
57.
Gilbert
,
C. J.
,
Schroeder
,
V.
, and
Ritchie
,
R. O.
,
1999
, “
Mechanisms for Fracture and Fatigue-Crack Propagation in a Bulk Metallic Glass
,”
Metall. Mater. Trans. A
,
30
(
7
), pp.
1739
1753
.10.1007/s11661-999-0173-y
58.
Menzel
,
B. C.
, and
Dauskardt
,
R. H.
,
2006
, “
Stress-Life Fatigue Behavior of a Zr-Based Bulk Metallic Glass
,”
Acta Mater.
,
54
(
4
), pp.
935
943
.10.1016/j.actamat.2005.10.021
59.
Yokoyama
,
Y.
,
Fukaura
,
K.
, and
Sunada
,
H.
,
2000
, “
Fatigue Properties and Microstructures of Zr55Cu30Al10Ni5 Bulk Glassy Alloys
,”
Mater. Trans.
,
41
(
6
), pp.
675
680
.10.2320/matertrans1989.41.675
60.
Wang
,
J.
,
Li
,
R.
,
Hua
,
N.
, and
Zhang
,
T.
,
2011
, “
Co-Based Ternary Bulk Metallic Glasses With Ultrahigh Strength and Plasticity
,”
J. Mater. Res.
,
26
(
16
), pp.
2072
2079
.10.1557/jmr.2011.187
61.
Steif
,
P. S.
,
Spaepen
,
F.
, and
Hutchinson
,
J. W.
,
1982
, “
Strain Localization in Amorphous Metals
,”
Acta Metall.
,
30
(
2
), pp.
447
455
.10.1016/0001-6160(82)90225-5
62.
Chen
,
M.
,
2008
, “
Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility
,”
Annu. Rev. Mater. Res.
,
38
(
1
), pp.
445
469
.10.1146/annurev.matsci.38.060407.130226
63.
Bing
,
Y.
,
Morrison
,
M. L.
,
Liaw
,
P. K.
,
Buchanan
,
R. A.
,
Wang
,
G.
,
Liu
,
C. T.
, and
Denda
,
M.
,
2005
, “
Dynamic Evolution of Nanoscale Shear Bands in a Bulk-Metallic Glass
,”
Appl. Phys. Lett.
,
86
(
14
), p.
141904
.10.1063/1.1891302
64.
Sha
,
Z. D.
,
He
,
L. C.
,
Xu
,
S.
,
Pei
,
Q. X.
,
Liu
,
Z. S.
,
Zhang
,
Y. W.
, and
Wang
,
T. J.
,
2014
, “
Effect of Aspect Ratio on the Mechanical Properties of Metallic Glasses
,”
Scr. Mater.
,
93
(
2
), pp.
36
39
.10.1016/j.scriptamat.2014.08.025
65.
Sha
,
Z. D.
,
Pei
,
Q. X.
,
Sorkin
,
V.
,
Branicio
,
P. S.
,
Zhang
,
Y. W.
, and
Gao
,
H.
,
2013
, “
On the Notch Sensitivity of Cuzr Metallic Glasses
,”
Appl. Phys. Lett.
,
103
(
8
), p.
081903
.10.1063/1.4819099
66.
Sha
,
Z. D.
,
Pei
,
Q. X.
,
Liu
,
Z. S.
,
Zhang
,
Y. W.
, and
Wang
,
T. J.
,
2015
, “
Necking and Notch Strengthening in Metallic Glass With Symmetric Sharp-and-Deep Notches
,”
Sci. Rep.
,
5
, p.
10797
.10.1038/srep10797
67.
Greer
,
A. L.
,
2009
, “
Metallic Glasses…on the Threshold
,”
Mater. Today
,
12
(
1–2
), pp.
14
22
.10.1016/S1369-7021(09)70037-9
68.
Spaepen
,
F.
,
1977
, “
A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses
,”
Acta Metall.
,
25
(
4
), pp.
407
415
.10.1016/0001-6160(77)90232-2
69.
Xiong
,
R.
,
Si
,
P. C.
,
Wang
,
J. N.
,
Xu
,
Z.
,
Xu
,
S.
,
Wang
,
W. M.
, and
Wang
,
W. H.
,
2001
, “
Preparation and Mechanical Properties of a New Zr-Al-Ti-Cu-Ni-Be Bulk Metallic Glass
,”
Mater. Lett.
,
50
(
5–6
), pp.
279
283
.10.1016/S0167-577X(01)00240-3
70.
Dai
,
L. H.
, and
Bai
,
Y. L.
,
2008
, “
Basic Mechanical Behaviors and Mechanics of Shear Banding in Bmgs
,”
Int. J. Impact Eng.
,
35
(
8
), pp.
704
716
.10.1016/j.ijimpeng.2007.10.007
71.
Hays
,
C. C.
,
Kim
,
C. P.
, and
Johnson
,
W. L.
,
2000
, “
Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing In Situ Formed Ductile Phase Dendrite Dispersions
,”
Phys. Rev. Lett.
,
84
(
13
), pp.
2901
2904
.10.1103/PhysRevLett.84.2901
72.
Adibi
,
S.
,
Sha
,
Z. D.
,
Branicio
,
P. S.
,
Joshi
,
S. P.
,
Liu
,
Z. S.
, and
Zhang
,
Y. W.
,
2013
, “
A Transition From Localized Shear Banding to Homogeneous Superplastic Flow in Nanoglass
,”
Appl. Phys. Lett.
,
103
(
21
), p.
211905
.10.1063/1.4833018
73.
Lee
,
S. W.
,
Mehdi
,
J. Z.
,
Chen
,
D. Z.
,
Zhang
,
Y. W.
, and
Greer
,
J. R.
,
2015
, “
Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures
,”
Nano Lett.
,
15
(
9
), pp.
5673
5681
.10.1021/acs.nanolett.5b01034
74.
Chang
,
Q. C.
,
Tao
,
Y. P.
,
Kuzmin
,
O.
,
Zhe
,
F. Z.
,
Ma
,
E.
,
Th
,
J. M.
, and
Hosson
,
D.
,
2011
, “
Intrinsic Size Effects in the Mechanical Response of Taper-Free Nanopillars of Metallic Glass
,”
Phys. Rev. B
,
83
(
18
), p.
180201
.10.1103/PhysRevB.83.180201
75.
Zhang
,
Y.
,
Wang
,
W. H.
, and
Greer
,
A. L.
,
2006
, “
Making Metallic Glasses Plastic by Control of Residual Stress
,”
Nat. Mater.
,
5
(
11
), pp.
857
860
.10.1038/nmat1758
76.
Chen
,
J. H.
,
Chen
,
Y.
,
Jiang
,
M. Q.
,
Chen
,
X. W.
,
Zhang
,
H. F.
, and
Dai
,
L. H.
,
2015
, “
On the Compressive Failure of Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glass Composite
,”
Int. J. Solids Struct.
,
69–70
, pp.
428
441
.10.1016/j.ijsolstr.2015.05.008
77.
Launey
,
M. E.
,
Hofmann
,
D. C.
,
Suh
,
J. Y.
,
Kozachkov
,
H.
,
Johnson
,
W. L.
, and
Ritchie
,
R. O.
,
2009
, “
Fracture Toughness and Crack-Resistance Curve Behavior in Metallic Glass-Matrix Composites
,”
Appl. Phys. Lett.
,
94
(
24
), p.
241910
.10.1063/1.3156026
78.
Qiao
,
J.
,
Jia
,
H.
, and
Liaw
,
P. K.
,
2016
, “
Metallic Glass Matrix Composites
,”
Mater. Sci. Eng.
,
100
, pp.
1
69
.10.1016/j.mser.2015.12.001
79.
Guo
,
H.
,
Yan
,
P. F.
,
Wang
,
Y. B.
,
Tan
,
J.
,
Zhang
,
Z. F.
,
Sui
,
M. L.
, and
Ma
,
E.
,
2007
, “
Tensile Ductility and Necking of Metallic Glass
,”
Nat. Mater.
,
6
(
10
), pp.
735
739
.10.1038/nmat1984
80.
Jang
,
D.
,
Gross
,
C. T.
, and
Greer
,
J. R.
,
2011
, “
Effects of Size on the Strength and Deformation Mechanism in Zr-Based Metallic Glasses
,”
Int. J. Plast.
,
27
(
6
), pp.
858
867
.10.1016/j.ijplas.2010.09.010
81.
Bharathula
,
A.
,
Lee
,
S. W.
,
Wright
,
W. J.
, and
Flores
,
K. M.
,
2010
, “
Compression Testing of Metallic Glass at Small Length Scales: Effects on Deformation Mode and Stability
,”
Acta Mater.
,
58
(
17
), pp.
5789
5796
.10.1016/j.actamat.2010.06.054
82.
Kuzmin
,
O. V.
,
Pei
,
Y. T.
,
Chen
,
C. Q.
, and
De Hosson
,
J. T. M.
,
2012
, “
Intrinsic and Extrinsic Size Effects in the Deformation of Metallic Glass Nanopillars
,”
Acta Mater.
,
60
(
3
), pp.
889
898
.10.1016/j.actamat.2011.11.023
83.
Volkert
,
C. A.
,
Donohue
,
A.
, and
Spaepen
,
F.
,
2008
, “
Effect of Sample Size on Deformation in Amorphous Metals
,”
J. Appl. Phys.
,
103
(
8
), p.
5879
.10.1063/1.2884584
84.
Jang
,
D. C.
, and
Greer
,
J. R.
,
2010
, “
Transition From a Strong-yet-Brittle to a Stronger-and-Ductile State by Size Reduction of Metallic Glasses
,”
Nat. Mater.
,
9
(
3
), pp.
215
219
.10.1038/nmat2622
85.
Sha
,
Z. D.
,
Branicio
,
P. S.
,
Pei
,
Q. X.
,
Liu
,
Z. S.
,
Lee
,
H. P.
,
Tay
,
T. E.
, and
Wang
,
T. J.
,
2015
, “
Strong and Superplastic Nanoglass
,”
Nanoscale
,
7
(
41
), pp.
17404
17409
.10.1039/C5NR04740D
86.
Sha
,
Z. D.
,
Branicio
,
P. S.
,
Lee
,
H. P.
, and
Tong
,
E. T.
,
2017
, “
Strong and Ductile Nanolaminate Composites Combining Metallic Glasses and Nanoglasses
,”
Int. J. Plast.
,
90
, pp.
231
241
.10.1016/j.ijplas.2017.01.010
87.
Şopu
,
D.
, and
Albe
,
K.
,
2015
, “
Influence of Grain Size and Composition, Topology and Excess Free Volume on the Deformation Behavior of Cu-Zr Nanoglasses
,”
Beilstein J. Nanotechnol.
,
6
, pp.
537
545
.10.3762/bjnano.6.56
88.
Chen
,
N.
,
Wang
,
D.
,
Feng
,
T.
,
Kruk
,
R.
,
Yao
,
K. F.
,
Louzguine-Luzgin
,
D. V.
,
Hahn
,
H.
, and
Gleiter
,
H.
,
2015
, “
A Nanoglass Alloying Immiscible Fe and Cu at the Nanoscale
,”
Nanoscale
,
7
(
15
), pp.
6607
6611
.10.1039/C5NR01406A
89.
Xiao
,
L. W.
,
Feng
,
J.
,
Hahn
,
H.
,
Ju
,
L.
,
Gleiter
,
H.
,
Sun
,
J.
, and
Ji
,
X. F.
,
2015
, “
Plasticity of a Scandium-Based Nanoglass
,”
Scr. Mater.
,
98
, pp.
40
43
.10.1016/j.scriptamat.2014.11.010
90.
Jiang
,
J.-Z.
,
Hofmann
,
D.
,
Jarvis
,
D. J.
, and
Fecht
,
H.-J.
,
2015
, “
Low‐Density High‐Strength Bulk Metallic Glasses and Their Composites: A Review
,”
Adv. Eng. Mater.
,
17
(
6
), pp.
761
780
.10.1002/adem.201400252
91.
Hufnagel
,
T. C.
,
Schuh
,
C. A.
, and
Falk
,
M. L.
,
2016
, “
Deformation of Metallic Glasses: Recent Developments in Theory, Simulations, and Experiments
,”
Acta Mater.
,
109
(
4
), pp.
375
393
.10.1016/j.actamat.2016.01.049
92.
Sun
,
B. A.
, and
Wang
,
W. H.
,
2015
, “
The Fracture of Bulk Metallic Glasses
,”
Prog. Mater. Sci.
,
74
, pp.
211
307
.10.1016/j.pmatsci.2015.05.002
93.
Greer
,
A. L.
,
Cheng
,
Y. Q.
, and
Ma
,
E.
,
2013
, “
Shear Bands in Metallic Glasses
,”
Mater. Sci. Eng.
,
74
(
4
), pp.
71
132
.10.1016/j.mser.2013.04.001
94.
Sharp
,
M. L.
,
Nordmark
,
G. E.
, and
Menzemer
,
C. C.
,
1996
,
Fatigue Design of Aluminum Components and Structures
,
McGraw-Hill
,
New York
.
95.
Wang
,
G. Y.
,
Liaw
,
P. K.
,
Yokoyama
,
Y.
, and
Inoue
,
A.
,
2011
, “
Size Effects on the Fatigue Behavior of Bulk Metallic Glasses
,”
J. Appl. Phys.
,
110
(
11
), p.
42
.10.1063/1.3664846
96.
Fan
,
C.
,
Ott
,
R. T.
, and
Hufnagel
,
T. C.
,
2002
, “
Metallic Glass Matrix Composite With Precipitated Ductile Reinforcement
,”
Appl. Phys. Lett.
,
81
(
6
), pp.
1020
1022
.10.1063/1.1498864
97.
Ma
,
H.
,
Xu
,
J.
, and
Ma
,
E.
,
2003
, “
Mg-Based Bulk Metallic Glass Composites With Plasticity and High Strength
,”
Appl. Phys. Lett.
,
83
(
14
), pp.
2793
2795
.10.1063/1.1616192
98.
Pan
,
D. G.
,
Zhang
,
H. F.
,
Wang
,
A. M.
, and
Hu
,
Z. Q.
,
2006
, “
Enhanced Plasticity in Mg-Based Bulk Metallic Glass Composite Reinforced With Ductile Nb Particles
,”
Appl. Phys. Lett.
,
89
(
26
), p.
261904
.10.1063/1.2423234
99.
Guo
,
S. F.
,
Liu
,
L.
,
Li
,
N.
, and
Li
,
Y.
,
2010
, “
Fe-Based Bulk Metallic Glass Matrix Composite With Large Plasticity
,”
Scr. Mater.
,
62
(
6
), pp.
329
332
.10.1016/j.scriptamat.2009.10.024
100.
Wu
,
Y.
,
Wang
,
H.
,
Wu
,
H. H.
,
Zhang
,
Z. Y.
,
Hui
,
X. D.
,
Chen
,
G. L.
,
Ma
,
D.
,
Wang
,
X. L.
, and
Lu
,
Z. P.
,
2011
, “
Formation of Cu-Zr-Al Bulk Metallic Glass Composites With Improved Tensile Properties
,”
Acta Mater.
,
59
(
8
), pp.
2928
2936
.10.1016/j.actamat.2011.01.029
101.
Zhou
,
H. F.
,
Qu
,
S. X.
, and
Yang
,
W.
,
2013
, “
An Atomistic Investigation of Structural Evolution in Metallic Glass Matrix Composites
,”
Int. J. Plast.
,
44
, pp.
147
160
.10.1016/j.ijplas.2013.01.002
102.
Wu
,
F. F.
,
Zhang
,
Z. F.
, and
Mao
,
S. X.
,
2009
, “
Size-Dependent Shear Fracture and Global Tensile Plasticity of Metallic Glasses
,”
Acta Mater.
,
57
(
1
), pp.
257
266
.10.1016/j.actamat.2008.09.012
103.
Singh
,
I.
,
Narasimhan
,
R.
, and
Zhang
,
Y. W.
,
2014
, “
Ductility Enhancement in Nanoglass: Role of Interaction Stress Between Flow Defects
,”
Philos. Mag. Lett.
,
94
(
11
), pp.
678
687
.10.1080/09500839.2014.961584
104.
Liu
,
Z.
,
Chen
,
W.
,
Carstensen
,
J.
,
Ketkaew
,
J.
,
Mota
,
R. M. O.
,
Guest
,
J. K.
, and
Schroers
,
J.
,
2016
, “
3D Metallic Glass Cellular Structures
,”
Acta Mater.
,
105
, pp.
35
43
.10.1016/j.actamat.2015.11.057
105.
Sha
,
Z. D.
,
He
,
L. C.
,
Pei
,
Q. X.
,
Liu
,
Z. S.
,
Zhang
,
Y. W.
, and
Wang
,
T. J.
,
2014
, “
The Mechanical Properties of a Nanoglass/Metallic Glass/Nanoglass Sandwich Structure
,”
Scr. Mater.
,
83
, pp.
37
40
.10.1016/j.scriptamat.2014.04.009
106.
Sha
,
Z. D.
,
She
,
C. M.
,
Xu
,
G. K.
,
Pei
,
Q. X.
,
Liu
,
Z. S.
,
Wang
,
T. J.
, and
Gao
,
H. J.
,
2017
, “
Metallic Glass-Based Chiral Nanolattice: Light Weight, Auxeticity, and Superior Mechanical Properties
,”
Mater. Today
,
20
(
10
), pp.
569
576
.10.1016/j.mattod.2017.10.001
107.
Sha
,
Z. D.
,
Teng
,
Y.
,
Poh
,
H. L.
,
Pei
,
Q.
,
Xing
,
G.
, and
Gao
,
H.
,
2019
, “
Notch Strengthening in Nanoscale Metallic Glasses
,”
Acta Mater.
,
169
, pp.
147
154
.10.1016/j.actamat.2019.02.044
108.
Qiao
,
J. C.
,
Yao
,
Y.
,
Pelletier
,
J. M.
, and
Keer
,
L. M.
,
2016
, “
Understanding of Micro-Alloying on Plasticity in Cu46Zr47-xAl7Dyx (0<x<8) Bulk Metallic Glasses Under Compression: Based on Mechanical Relaxations and Theoretical Analysis
,”
Int. J. Plast.
,
82
, pp.
62
75
.10.1016/j.ijplas.2016.02.002
109.
Jia
,
H.
,
Wang
,
G.
,
Chen
,
S.
,
Gao
,
Y.
,
Li
,
W.
, and
Liaw
,
P. K.
,
2018
, “
Fatigue and Fracture Behavior of Bulk Metallic Glasses and Their Composites
,”
Prog. Mater. Sci.
,
98
, pp.
168
248
.10.1016/j.pmatsci.2018.07.002
110.
Sha
,
Z. D.
,
Qu
,
S. X.
,
Liu
,
Z. S.
,
Wang
,
T. J.
, and
Gao
,
H. J.
,
2015
, “
Cyclic Deformation in Metallic Glasses
,”
Nano Lett.
,
15
(
10
), pp.
7010
7015
.10.1021/acs.nanolett.5b03045
111.
Sha
,
Z.
,
Wei
,
H. W.
,
Pei
,
Q.
,
Branicio
,
P. S.
,
Liu
,
Z.
,
Wang
,
T.
,
Guo
,
T.
, and
Gao
,
H.
,
2017
, “
Atomistic Origin of Size Effects in Fatigue Behavior of Metallic Glasses
,”
J. Mech. Phys. Solids
,
104
, pp.
84
95
.10.1016/j.jmps.2017.04.005
112.
Jang
,
D.
,
Maaß
,
R.
,
Wang
,
G.
,
Liaw
,
P. K.
, and
Greer
,
J. R.
,
2013
, “
Fatigue Deformation of Microsized Metallic Glasses
,”
Scr. Mater.
,
68
(
10
), pp.
773
776
.10.1016/j.scriptamat.2012.12.011
113.
Wang
,
G. Y.
,
Liaw
,
P. K.
,
Yokoyama
,
Y.
,
Inoue
,
A.
, and
Liu
,
C. T.
,
2008
, “
Fatigue Behavior of Zr-Based Bulk-Metallic Glasses
,”
Mater. Sci. Eng., A
,
494
(
1–2
), pp.
314
323
.10.1016/j.msea.2008.04.034
114.
Wang
,
G. Y.
,
Liaw
,
P. K.
,
Peter
,
W. H.
,
Yang
,
B.
,
Freels
,
M.
,
Yokoyama
,
Y.
,
Benson
,
M. L.
,
Green
,
B. A.
,
Saleh
,
T. A.
,
McDaniels
,
R. L.
,
Steward
,
R. V.
,
Buchanan
,
R. A.
,
Liu
,
C. T.
, and
Brooks
,
C. R.
,
2004
, “
Fatigue Behavior and Fracture Morphology of Zr50Al10Cu40 and Zr50Al10Cu30Ni10 Bulk-Metallic Glasses
,”
Intermetallics
,
12
(
10–11
), pp.
1219
1227
.10.1016/j.intermet.2004.04.038
115.
Wang
,
G. Y.
,
Liaw
,
P. K.
, and
Morrison
,
M. L.
,
2009
, “
Progress in Studying the Fatigue Behavior of Zr-Based Bulk-Metallic Glasses and Their Composites
,”
Intermetallics
,
17
(
8
), pp.
579
590
.10.1016/j.intermet.2009.01.017
116.
Gludovatz
,
B.
,
Demetriou
,
M. D.
,
Floyd
,
M.
,
Hohenwarter
,
A.
,
Johnson
,
W. L.
, and
Ritchie
,
R. O.
,
2013
, “
Enhanced Fatigue Endurance of Metallic Glasses Through a Staircase-Like Fracture Mechanism
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
46
), pp.
18419
18424
.10.1073/pnas.1317715110
117.
Davis
,
L. A.
,
1976
, “
Fatigue of Metallic Glasses
,”
J. Mater. Sci.
,
11
(
4
), pp.
711
717
.10.1007/BF01209458
118.
Alpas
,
A. T.
,
Edwards
,
L.
, and
Reid
,
C. N.
,
1989
, “
Fracture and Fatigue Crack Propagation in a Nickel-Base Metallic Glass
,”
Metall. Trans. A
,
20
(
8
), pp.
1395
1409
.10.1007/BF02665497
119.
Philo
,
S. L.
, and
Kruzic
,
J. J.
,
2010
, “
Fatigue Crack Growth Behavior of a Zr-Ti-Cu-Ni-Be Bulk Metallic Glass: Role of Ambient Air Environment
,”
Scr. Mater.
,
62
(
7
), pp.
473
476
.10.1016/j.scriptamat.2009.12.014
120.
Morrison
,
M. L.
,
Buchanan
,
R. A.
,
Liaw
,
P. K.
,
Green
,
B. A.
,
Wang
,
G. Y.
,
Liu
,
C.
, and
Horton
,
J. A.
,
2007
, “
Four-Point-Bending-Fatigue Behavior of the Zr-Based Vitreloy 105 Bulk Metallic Glass
,”
Mater. Sci. Eng., A
,
467
(
1–2
), pp.
190
197
.10.1016/j.msea.2007.05.066
121.
Naleway
,
S. E.
,
Greene
,
R. B.
,
Gludovatz
,
B.
,
Dave
,
N. K. N.
,
Ritchie
,
R. O.
, and
Kruzic
,
J. J.
,
2013
, “
A Highly Fatigue-Resistant Zr-Based Bulk Metallic Glass
,”
Metall. Mater. Trans. A
,
44
(
13
), pp.
5688
5693
.10.1007/s11661-013-1923-4
122.
Zhang
,
L. K.
,
Chen
,
Z. H.
,
Chen
,
D.
,
Zhao
,
X. Y.
, and
Zheng
,
Q.
,
2013
, “
Four-Point-Bending-Fatigue Behavior of the Cu45Zr45Ag7Al3 Bulk Metallic Glass
,”
J. Non-Cryst. Solids
,
370
, pp.
31
36
.10.1016/j.jnoncrysol.2013.03.032
123.
Song
,
Z. Q.
,
He
,
Q.
,
Ma
,
E.
, and
Xu
,
J.
,
2015
, “
Fatigue Endurance Limit and Crack Growth Behavior of a High-Toughness Zr61Ti2Cu25Al12 Bulk Metallic Glass
,”
Acta Mater.
,
99
, pp.
165
175
.10.1016/j.actamat.2015.07.071
124.
Cameron
,
K. K.
, and
Dauskardt
,
R. H.
,
2006
, “
Fatigue Damage in Bulk Metallic Glass I: Simulation
,”
Scr. Mater.
,
54
(
3
), pp.
349
353
.10.1016/j.scriptamat.2005.10.006
125.
Vallery
,
R. S.
,
Liu
,
M.
,
Gidley
,
D. W.
,
Launey
,
M. E.
, and
Kruzic
,
J. J.
,
2007
, “
Characterization of Fatigue-Induced Free Volume Changes in a Bulk Metallic Glass Using Positron Annihilation Spectroscopy
,”
Appl. Phys. Lett.
,
91
(
26
), p.
261908
.10.1063/1.2825427
126.
Liu
,
M.
,
Vallery
,
R. S.
,
Gidley
,
D. W.
,
Launey
,
M. E.
, and
Kruzic
,
J. J.
,
2009
, “
Assessment of the Fatigue Transformation Zone in Bulk Metallic Glasses Using Positron Annihilation Spectroscopy
,”
J. Appl. Phys.
,
105
(
9
), p.
093501
.10.1063/1.3120784
127.
Ge
,
T. P.
,
Gao
,
X. Q.
,
Huang
,
B.
,
Wang
,
W. H.
, and
Bai
,
H. Y.
,
2015
, “
The Role of Time in Activation of Flow Units in Metallic Glasses
,”
Intermetallics
,
67
, pp.
47
51
.10.1016/j.intermet.2015.07.004
128.
Lu
,
J.
,
Ravichandran
,
G.
, and
Johnson
,
W. L.
,
2003
, “
Deformation Behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass Over a Wide Range of Strain-Rates and Temperatures
,”
Acta Mater.
,
51
(
12
), pp.
3429
3443
.10.1016/S1359-6454(03)00164-2
129.
Launey
,
M. E.
,
Busch
,
R.
, and
Kruzic
,
J. J.
,
2006
, “
Influence of Structural Relaxation on the Fatigue Behavior of a Zr41.25Ti13.75Ni10Cu12.5Be22.5 Bulk Amorphous Alloy
,”
Scr. Mater.
,
54
(
3
), pp.
483
487
.10.1016/j.scriptamat.2005.09.048
130.
Yue
,
Y.
,
Wang
,
R.
,
Ma
,
D. Q.
,
Tian
,
J. F.
,
Zhang
,
X. Y.
,
Jing
,
Q.
,
Ma
,
M. Z.
, and
Liu
,
R. P.
,
2015
, “
Fatigue Behavior of a Zr-Based Bulk Metallic Glass Under Uniaxial Tension-Tension and Three-Point Bending Loading Mode
,”
Intermetallics
,
60
, pp.
86
91
.10.1016/j.intermet.2015.02.005
131.
Hu
,
X.
,
Ng
,
S. C.
,
Feng
,
Y. P.
, and
Li
,
Y.
,
2001
, “
Cooling-Rate Dependence of the Density of Pd40Ni10Cu30P20 Bulk Metallic Glass
,”
Phys. Rev. A
,
64
(
17
), pp.
607
611
.10.1103/PhysRevB.64.172201
132.
Jana
,
S.
,
Bhowmick
,
R.
,
Kawamura
,
Y.
,
Chattopadhyay
,
K.
, and
Ramamurty
,
U.
,
2004
, “
Deformation Morphology Underneath the Vickers Indent in a Zr-Based Bulk Metallic Glass
,”
Intermetallics
,
12
(
10–11
), pp.
1097
1102
.10.1016/j.intermet.2004.04.018
133.
Chen
,
L. Y.
,
Setyawan
,
A. D.
,
Kato
,
H.
,
Inoue
,
A.
,
Zhang
,
G. Q.
,
Saida
,
J.
,
Wang
,
X. D.
,
Cao
,
Q. P.
, and
Jiang
,
J. Z.
,
2008
, “
Free-Volume-Induced Enhancement of Plasticity in a Monolithic Bulk Metallic Glass at Room Temperature
,”
Scr. Mater.
,
59
(
1
), pp.
75
78
.10.1016/j.scriptamat.2008.02.025
134.
Wang
,
G. Y.
,
Liaw
,
P. K.
,
Peker
,
A.
,
Freels
,
M.
,
Peter
,
W. H.
,
Buchanan
,
R. A.
, and
Brooks
,
C. R.
,
2006
, “
Comparison of Fatigue Behavior of a Bulk Metallic Glass and Its Composite
,”
Intermetallics
,
14
(
8–9
), pp.
1091
1097
.10.1016/j.intermet.2006.01.045
135.
Freels
,
M.
,
Wang
,
G. Y.
,
Zhang
,
W.
,
Liaw
,
P. K.
, and
Inoue
,
A.
,
2011
, “
Cyclic Compression Behavior of a Cu-Zr-Al-Ag Bulk Metallic Glass
,”
Intermetallics
,
19
(
8
), pp.
1174
1183
.10.1016/j.intermet.2011.03.023
136.
Wang
,
G. Y.
,
Qiao
,
D. C.
,
Yokoyama
,
Y.
,
Freels
,
M.
,
Inoue
,
A.
, and
Liaw
,
P. K.
,
2009
, “
Effects of Loading Modes on the Fatigue Behavior of Zr-Based Bulk-Metallic Glasses
,”
J. Alloys Compd.
,
483
(
1–2
), pp.
143
145
.10.1016/j.jallcom.2008.07.228
137.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
(
3
), pp.
293
297
.http://garfield.library.upenn.edu/classics1981/A1981LD32400001.pdf
138.
Yuan
,
T.
,
Wang
,
G.
,
Feng
,
Q.
,
Liaw
,
P. K.
,
Yokoyama
,
Y.
, and
Inoue
,
A.
,
2013
, “
Modeling Size Effects on Fatigue Life of a Zirconium-Based Bulk Metallic Glass Under Bending
,”
Acta Mater.
,
61
(
1
), pp.
273
279
.10.1016/j.actamat.2012.09.057
139.
Launey
,
M. E.
,
Busch
,
R.
, and
Kruzic
,
J. J.
,
2008
, “
Effects of Free Volume Changes and Residual Stresses on the Fatigue and Fracture Behavior of a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass
,”
Acta Mater.
,
56
(
3
), pp.
500
510
.10.1016/j.actamat.2007.10.007
140.
Kruzic
,
J. J.
,
2011
, “
Understanding the Problem of Fatigue in Bulk Metallic Glasses
,”
Metall. Mater. Trans. A
,
42
(
6
), pp.
1516
1523
.10.1007/s11661-010-0413-1
141.
Raghavan
,
R.
,
Ayer
,
R.
,
Jin
,
H. W.
,
Marzinsky
,
C. N.
, and
Ramamurty
,
U.
,
2008
, “
Effect of Shot Peening on the Fatigue Life of a Zr-Based Bulk Metallic Glass
,”
Scr. Mater.
,
59
(
2
), pp.
167
170
.10.1016/j.scriptamat.2008.03.009
142.
El-Shabasy
,
A. B.
, and
Lewandowski
,
J. J.
,
2010
, “
Fatigue Coaxing Experiments on a Zr-Based Bulk-Metallic Glass
,”
Scr. Mater.
,
62
(
7
), pp.
481
484
.10.1016/j.scriptamat.2009.12.016
143.
Grell
,
D.
,
Dabrock
,
F.
, and
Kerscher
,
E.
,
2018
, “
Cyclic Cryogenic Pretreatments Influencing the Mechanical Properties of a Bulk Glassy Zr-Based Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
6
), pp.
1330
1343
.10.1111/ffe.12777
144.
Liu
,
Y.
,
Wang
,
Y. M.
, and
Liu
,
L.
,
2015
, “
Fatigue Crack Propagation Behavior and Fracture Toughness in a Ni-Free Zrcufealag Bulk Metallic Glass
,”
Acta Mater.
,
92
, pp.
209
219
.10.1016/j.actamat.2015.04.003
145.
Schroeder
,
V.
,
Gilbert
,
C. J.
, and
Ritchie
,
R. O.
,
2001
, “
A Comparison of the Mechanisms of Fatigue-Crack Propagation Behavior in a Zr-Based Bulk Amorphous Metal in Air and an Aqueous Chloride Solution
,”
Mater. Sci. Eng., A
,
317
(
1–2
), pp.
145
152
.10.1016/S0921-5093(01)01157-1
146.
Flores
,
K. M.
, and
Dauskardt
,
R. H.
,
2004
, “
Fracture and Deformation of Bulk Metallic Glasses and Their Composites
,”
Intermetallics
,
12
(
7–9
), pp.
1025
1029
.10.1016/j.intermet.2004.05.004
147.
Zhang
,
H.
,
Wang
,
Z. G.
,
Qiu
,
K. Q.
,
Zang
,
Q. S.
, and
Zhang
,
H. F.
,
2003
, “
Cyclic Deformation and Fatigue Crack Propagation of a Zr-Based Bulk Amorphous Metal
,”
Mater. Sci. Eng., A
,
356
(
1–2
), pp.
173
180
.10.1016/S0921-5093(03)00113-8
148.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
.10.1115/1.3656900
149.
Dill
,
S. J.
,
Bennison
,
S. J.
, and
Dauskardt
,
R. H.
,
1997
, “
Subcritical Crack‐Growth Behavior of Borosilicate Glass Under Cyclic Loads: Evidence of a Mechanical Fatigue Effect
,”
J. Am. Ceram. Soc.
,
80
(
3
), pp.
773
776
.10.1111/j.1151-2916.1997.tb02897.x
150.
Gilbert
,
C. J.
,
Petrany
,
R. N.
,
Ritchie
,
R. O.
,
Dauskardt
,
R. H.
, and
Steinbrech
,
R. W.
,
1995
, “
Cyclic Fatigue in Monolithic Alumina: Mechanisms for Crack Advance Promoted by Frictional Wear of Grain Bridges
,”
J. Mater. Sci.
,
30
(
3
), pp.
643
654
.10.1007/BF00356324
151.
Philo
,
S. L.
,
Heinrich
,
J.
,
Gallino
,
I.
,
Busch
,
R.
, and
Kruzic
,
J. J.
,
2011
, “
Fatigue Crack Growth Behavior of a Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 Bulk Metallic Glass-Forming Alloy
,”
Scr. Mater.
,
64
(
4
), pp.
359
362
.10.1016/j.scriptamat.2010.10.042
152.
Hess
,
P. A.
,
Menzel
,
B. C.
, and
Dauskardt
,
R. H.
,
2006
, “
Fatigue Damage in Bulk Metallic Glass II: Experiments
,”
Scr. Mater.
,
54
(
3
), pp.
355
361
.10.1016/j.scriptamat.2005.10.007
153.
Flores
,
K. M.
,
Johnson
,
W. L.
, and
Dauskardt
,
R. H.
,
2003
, “
Fracture and Fatigue Behavior of a Zr-Ti-Nb Ductile Phase Reinforced Bulk Metallic Glass Matrix Composite
,”
Scr. Mater.
,
49
(
12
), pp.
1181
1187
.10.1016/j.scriptamat.2003.08.020
154.
Wang
,
X. D.
,
Qu
,
R. T.
,
Liu
,
Z. Q.
, and
Zhang
,
Z. F.
,
2015
, “
Shear Band-Mediated Fatigue Cracking Mechanism of Metallic Glass at High Stress Level
,”
Mater. Sci. Eng., A
,
627
, pp.
336
339
.10.1016/j.msea.2015.01.008
155.
Zhang
,
Z. F.
,
Eckert
,
J.
, and
Schultz
,
L.
,
2004
, “
Fatigue and Fracture Behavior of Bulk Metallic Glass
,”
Metall. Mater. Trans. A
,
35
(
11
), pp.
3489
3498
.10.1007/s11661-004-0186-5
156.
Donovan
,
P. E.
,
1989
, “
A Yield Criterion for Pd40Ni40P20 Metallic Glass
,”
Acta Metall.
,
37
(
2
), pp.
445
456
.10.1016/0001-6160(89)90228-9
157.
Zhang
,
Z. F.
,
He
,
G.
,
Eckert
,
J.
, and
Schultz
,
L.
,
2003
, “
Fracture Mechanisms in Bulk Metallic Glassy Materials
,”
Phys. Rev. Lett.
,
91
(
4
), p.
045505
.10.1103/PhysRevLett.91.045505
158.
Liu
,
C. T.
,
Heatherly
,
L.
,
Horton
,
J. A.
,
Easton
,
D. S.
,
Carmichael
,
C. A.
,
Wright
,
J. L.
,
Schneibel
,
J. H.
,
Yoo
,
M. H.
,
Chen
,
C. H.
, and
Inoue
,
A.
,
1998
, “
Test Environments and Mechanical Properties of Zr-Base Bulk Amorphous Alloys
,”
Metall. Mater. Trans. A
,
29
(
7
), pp.
1811
1820
.10.1007/s11661-998-0004-6
159.
Cotterell
,
B.
, and
Rice
,
J. R.
,
1980
, “
Slightly Curved or Kinked Cracks
,”
Int. J. Fract.
,
16
(
2
), pp.
155
169
.10.1007/BF00012619
160.
Qiao
,
D.
,
Wang
,
G.
,
Jiang
,
W.
,
Yokoyama
,
Y.
,
Liaw
,
P. K.
, and
Choo
,
H.
,
2007
, “
Compression-Compression Fatigue and Fracture Behaviors of Zr50al10cu37pd3 Bulk-Metallic Glass
,”
Mater. Trans.
,
48
(
7
), pp.
1828
1833
.10.2320/matertrans.MJ200780
161.
Wang
,
G. Y.
,
Liaw
,
P. K.
,
Yokoyama
,
Y.
,
Freels
,
M.
, and
Inoue
,
A.
,
2010
, “
The Influence of Pd on Tension-Tension Fatigue Behavior of Zr-Based Bulk-Metallic Glasses
,”
Int. J. Fatigue
,
32
(
3
), pp.
599
604
.10.1016/j.ijfatigue.2009.04.009
162.
Wang
,
X. D.
,
Qu
,
R. T.
,
Liu
,
Z. Q.
, and
Zhang
,
Z. F.
,
2017
, “
Evolution of Shear-Band Cracking in Metallic Glass Under Cyclic Compression
,”
Mater. Sci. Eng., A
,
696
, pp.
267
272
.10.1016/j.msea.2017.04.087
163.
Tatschl
,
A.
,
Gilbert
,
C. J.
,
Schroeder
,
V.
,
Pippan
,
R.
, and
Ritchie
,
R. O.
,
2000
, “
Stereophotogrammetric Investigation of Overload and Cyclic Fatigue Fracture Surface Morphologies in a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass
,”
J. Mater. Res.
,
15
(
4
), pp.
898
903
.10.1557/JMR.2000.0128
164.
Wang
,
G.
,
Liaw
,
P. K.
,
Jin
,
X.
,
Yokoyama
,
Y.
,
Huang
,
E. W.
,
Jiang
,
F.
,
Keer
,
L. M.
, and
Inoue
,
A.
,
2010
, “
Fatigue Initiation and Propagation Behavior in Bulk-Metallic Glasses Under a Bending Load
,”
J. Appl. Phys.
,
108
(
11
), p.
113512
.10.1063/1.3501102
165.
Wang
,
G. Y.
,
Liaw
,
P. K.
,
Yokoyama
,
Y.
, and
Inoue
,
A.
,
2012
, “
Evolution of Shear Bands and Fatigue Striations in a Bulk Metallic Glass During Fatigue
,”
Intermetallics
,
23
(
2
), pp.
96
100
.10.1016/j.intermet.2011.12.018
166.
Scudino
,
S.
,
Shahid
,
R. N.
,
Escher
,
B.
,
Stoica
,
M.
,
Li
,
B. S.
, and
Kruzic
,
J. J.
,
2017
, “
Mapping the Cyclic Plastic Zone to Elucidate the Mechanisms of Crack Tip Deformation in Bulk Metallic Glasses
,”
Appl. Phys. Lett.
,
110
(
8
), p.
081903
.10.1063/1.4977001
167.
Qiao
,
D. C.
,
Liaw
,
P. K.
,
Fan
,
C.
,
Lin
,
Y. H.
,
Wang
,
G. Y.
,
Choo
,
H.
, and
Buchanan
,
R. A.
,
2006
, “
Fatigue and Fracture Behavior of (Zr58Ni13.6Cu18Al10.4)99Nb1 Bulk-Amorphous Alloy
,”
Intermetallics
,
14
(
8–9
), pp.
1043
1050
.10.1016/j.intermet.2006.01.044
168.
Fleck
,
N. A.
,
Shin
,
C. S.
, and
Smith
,
R. A.
,
1985
, “
Fatigue Crack Growth Under Compressive Loading
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
173
185
.10.1016/0013-7944(85)90063-3
169.
Lin
,
Y. C.
,
Tsai
,
Y. C.
,
Ono
,
T.
,
Liu
,
P.
,
Esashi
,
M.
,
Gessner
,
T.
, and
Chen
,
M.
,
2015
, “
Metallic Glass as a Mechanical Material for Microscanners
,”
Adv. Funct. Mater.
,
25
(
35
), pp.
5677
5682
.10.1002/adfm.201502456
170.
Sekol
,
R. C.
,
Kumar
,
G.
,
Carmo
,
M.
,
Gittleson
,
F.
,
Hardesty-Dyck
,
N.
,
Mukherjee
,
S.
,
Schroers
,
J.
, and
Taylor
,
A. D.
,
2013
, “
Bulk Metallic Glass Micro Fuel Cell
,”
Small
,
9
(
12
), pp.
2081
2085
.10.1002/smll.201201647
171.
Maaß
,
R.
,
Klaumünzer
,
D.
,
Villard
,
G.
,
Derlet
,
P. M.
, and
Löffler
,
J. F.
,
2012
, “
Shear-Band Arrest and Stress Overshoots During Inhomogeneous Flow in a Metallic Glass
,”
Appl. Phys. Lett.
,
100
(
7
), p.
071904
.10.1063/1.3684871
172.
Chen
,
C. Q.
,
Pei
,
Y. T.
, and
Hosson
,
J. T. M. D.
,
2010
, “
Effects of Size on the Mechanical Response of Metallic Glasses Investigated Through In Situ Tem Bending and Compression Experiments
,”
Acta Mater.
,
58
(
1
), pp.
189
200
.10.1016/j.actamat.2009.08.070
173.
Maaß
,
R.
,
Klaumünzer
,
D.
, and
Löffler
,
J. F.
,
2011
, “
Propagation Dynamics of Individual Shear Bands During Inhomogeneous Flow in a Zr-Based Bulk Metallic Glass
,”
Acta Mater.
,
59
(
8
), pp.
3205
3213
.10.1016/j.actamat.2011.01.060
174.
Turnbull
,
D.
,
1950
, “
Formation of Crystal Nuclei in Liquid Metals
,”
J. Appl. Phys.
,
21
(
10
), pp.
1022
1028
.10.1063/1.1699435
175.
Takeshi
,
K.
, and
Hajime
,
T.
,
2010
, “
Formation of a Crystal Nucleus From Liquid
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
32
), pp.
14036
14041
.10.1073/pnas.1001040107
176.
Kim
,
J. J.
,
Choi
,
Y.
,
Suresh
,
S.
, and
Argon
,
A. S.
,
2002
, “
Nanocrystallization During Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature
,”
Science
,
295
(
5555
), pp.
654
657
.10.1126/science.1067453
177.
Jiang
,
W. H.
, and
Atzmon
,
M.
,
2003
, “
The Effect of Compression and Tension on Shear-Band Structure and Nanocrystallization in Amorphous Alfegd: A High-Resolution Transmission Electron Microscopy Study
,”
Acta Mater.
,
51
(
14
), pp.
4095
4105
.10.1016/S1359-6454(03)00229-5
178.
Wang
,
C. C.
,
Mao
,
Y. W.
,
Shan
,
Z. W.
,
Dao
,
M.
,
Li
,
J.
,
Sun
,
J.
,
Ma
,
E.
, and
Suresh
,
S.
,
2013
, “
Real-Time, High-Resolution Study of Nanocrystallization and Fatigue Cracking in a Cyclically Strained Metallic Glass
,”
Proc. Natl. Acad. Sci.
,
110
(
49
), pp.
19725
19730
.10.1073/pnas.1320235110
179.
Zhang
,
J. C.
,
Chen
,
C.
,
Pei
,
Q. X.
,
Wan
,
Q.
,
Zhang
,
W. X.
, and
Sha
,
Z.
,
2016
, “
Deformation and Failure Mechanisms of Nanoscale Cellular Structures of Metallic Glasses
,”
RSC Adv.
,
6
(
103
), p.
100899
.10.1039/C6RA22483K
180.
Song
,
H. Y.
,
Li
,
S.
,
Zhang
,
Y. G.
,
Deng
,
Q.
,
Xu
,
T. H.
, and
Li
,
Y. L.
,
2017
, “
Atomic Simulations of Plastic Deformation Behavior of Cu50Zr50 Metallic Glass
,”
J. Non-Cryst. Solids
,
471
, pp.
312
321
.10.1016/j.jnoncrysol.2017.06.011
181.
Kondori
,
B.
,
Amine Benzerga
,
A.
, and
Needleman
,
A.
,
2018
, “
Discrete Shear-Transformation-Zone Plasticity Modeling of Notched Bars
,”
J. Mech. Phys. Solids
,
111
, pp.
18
42
.10.1016/j.jmps.2017.10.010
182.
Bulatov
,
V. V.
, and
Argon
,
A. S.
,
1994
, “
A Stochastic-Model for Continuum Elastoplastic Behavior—I: Numerical Approach and Strain Localization
,”
Modell. Simul. Mater. Sci. Eng.
,
2
(
2
), pp.
167
184
.10.1088/0965-0393/2/2/001
183.
Homer
,
E. R.
, and
Schuh
,
C. A.
,
2009
, “
Mesoscale Modeling of Amorphous Metals by Shear Transformation Zone Dynamics
,”
Acta Mater.
,
57
(
9
), pp.
2823
2833
.10.1016/j.actamat.2009.02.035
184.
Lo
,
Y. C.
,
Chou
,
H. S.
,
Cheng
,
Y. T.
,
Huang
,
J. C.
,
Morris
,
J. R.
, and
Liaw
,
P. K.
,
2010
, “
Structural Relaxation and Self-Repair Behavior in Nano-Scaled Zr–Cu Metallic Glass Under Cyclic Loading: Molecular Dynamics Simulations
,”
Intermetallics
,
18
(
5
), pp.
954
960
.10.1016/j.intermet.2010.01.012
185.
Shi
,
Y.
,
Louca
,
D.
,
Wang
,
G.
, and
Liaw
,
P. K.
,
2011
, “
Compression-Compression Fatigue Study on Model Metallic Glass Nanowires by Molecular Dynamics Simulations
,”
J. Appl. Phys.
,
110
(
2
), p.
42
.10.1063/1.3610443
186.
Cheng
,
Y. Q.
, and
Ma
,
E.
,
2011
, “
Atomic-Level Structure and Structure-Property Relationship in Metallic Glasses
,”
Prog. Mater. Sci.
,
56
(
4
), pp.
379
473
.10.1016/j.pmatsci.2010.12.002
187.
Cheng
,
Y. Q.
, and
Ma
,
E.
,
2008
, “
Indicators of Internal Structural States for Metallic Glasses: Local Order, Free Volume, and Configurational Potential Energy
,”
Appl. Phys. Lett.
,
93
(
5
), p.
051910
.10.1063/1.2966154
188.
Cheng
,
Y. Q.
,
Cao
,
A. J.
, and
Ma
,
E.
,
2009
, “
Correlation Between the Elastic Modulus and the Intrinsic Plastic Behavior of Metallic Glasses: The Roles of Atomic Configuration and Alloy Composition
,”
Acta Mater.
,
57
(
11
), pp.
3253
3267
.10.1016/j.actamat.2009.03.027
189.
Huang
,
X.
,
Ling
,
Z.
,
Wang
,
Y. J.
, and
Dai
,
L. H.
,
2016
, “
Intrinsic Structural Defects on Medium Range in Metallic Glasses
,”
Intermetallics
,
75
, pp.
36
41
.10.1016/j.intermet.2016.05.009
190.
Sha
,
Z. D.
,
Wu
,
R. Q.
,
Lu
,
Y. H.
,
Shen
,
L.
,
Yang
,
M.
,
Cai
,
Y. Q.
,
Feng
,
Y. P.
, and
Li
,
Y.
,
2009
, “
Glass Forming Abilities of Binary Cu100-xZrx (34, 35.5, and 38.2 at. %) Metallic Glasses: A Lammps Study
,”
J. Appl. Phys.
,
105
(
4
), p.
42
.10.1063/1.3081979
191.
Sha
,
Z. D.
,
Feng
,
Y. P.
, and
Li
,
Y.
,
2010
, “
Statistical Composition-Structure-Property Correlation and Glass-Forming Ability Based on the Full Icosahedra in Cu-Zr Metallic Glasses
,”
Appl. Phys. Lett.
,
96
(
6
), p.
061903
.10.1063/1.3310278
192.
Sha
,
Z. D.
,
Xu
,
B.
,
Shen
,
L.
,
Zhang
,
A. H.
,
Feng
,
Y. P.
, and
Li
,
Y.
,
2010
, “
The Basic Polyhedral Clusters, the Optimum Glass Formers, and the Composition-Structure-Property (Glass-Forming Ability) Correlation in Cu-Zr Metallic Glasses
,”
J. Appl. Phys.
,
107
(
6
), p.
063508
.10.1063/1.3359683
193.
Sha
,
Z. D.
,
Zhang
,
Y. W.
,
Feng
,
Y. P.
, and
Li
,
Y.
,
2011
, “
Molecular Dynamics Studies of Short to Medium Range Order in Cu64Zr36 Metallic Glass
,”
J. Alloys Compd.
,
509
(
33
), pp.
8319
8322
.10.1016/j.jallcom.2011.05.071
194.
Sha
,
Z. D.
,
Pan
,
H.
,
Pei
,
Q. X.
, and
Zhang
,
Y. W.
,
2012
, “
The Nature of the Atomic-Level Structure in the Cu-Zr Binary Metallic Glasses
,”
Intermetallics
,
26
(
4
), pp.
8
10
.10.1016/j.intermet.2012.03.009
195.
Sha
,
Z. D.
,
Feng
,
Y. P.
, and
Li
,
Y.
,
2011
, “
The Fundamental Structural Factor in Determining the Glass-Forming Ability and Mechanical Behavior in the Cu-Zr Metallic Glasses
,”
Mater. Chem. Phys.
,
127
(
1–2
), pp.
292
295
.10.1016/j.matchemphys.2011.02.005
196.
Sheng
,
H. W.
,
Luo
,
W. K.
,
Alamgir
,
F. M.
,
Bai
,
J. M.
, and
Ma
,
E.
,.
2006
, “
Atomic Packing and Short-to-Medium-Range Order in Metallic Glasses
,”
Nat.
,
439
(
7075
), pp.
419
25
.10.1038/nature04421
197.
Luo
,
J.
,
Dahmen
,
K.
,
Liaw
,
P. K.
, and
Shi
,
Y.
,
2015
, “
Low-Cycle Fatigue of Metallic Glass Nanowires
,”
Acta Mater.
,
87
, pp.
225
232
.10.1016/j.actamat.2014.12.038
198.
Shi
,
Y.
,
Luo, J.
,
Yuan
,
F.
, and
Huang
,
L.
,
2014
, “
Intrinsic Ductility of Glassy Solids
,”
J. Appl. Phys.
,
115
(
4
), p.
043528
.10.1063/1.4862959
199.
Sha
,
Z.
,
Teng
,
Y.
,
Liu
,
Z.
, and
Wang
,
T.
,
2018
, “
Microstructure Model, Toughening and Fatigue of Metallic Glasses: A Review
,”
Chin. J. Solid Mech.
,
39
(
4
), pp.
333
374
. http://en.cnki.com.cn/Article_en/CJFDTotal-GTLX201804001.htm
200.
Cai
,
S. L.
, and
Dai
,
L. H.
,
2014
, “
Suppression of Repeated Adiabatic Shear Banding by Dynamic Large Strain Extrusion Machining
,”
J. Mech. Phys. Solids
,
73
, pp.
84
102
.10.1016/j.jmps.2014.09.004
201.
Jiang
,
M. Q.
, and
Dai
,
L. H.
,
2009
, “
On the Origin of Shear Banding Instability in Metallic Glasses
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1267
1292
.10.1016/j.jmps.2009.04.008
202.
Huo
,
B.
,
Zheng
,
Q. S.
, and
Huang
,
Y.
,
1999
, “
A Note on the Effect of Surface Energy and Void Size to Void Growth
,”
Eur. J. Mech. A-Solid
,
18
(
6
), pp.
987
994
.10.1016/S0997-7538(99)00133-3
You do not currently have access to this content.