We discuss the role and the attributes of, as well as the state-of-the-art and some major findings in, the area of predictive analytical (“mathematical”) thermal stress modeling in electronic, opto-electronic, and photonic engineering. The emphasis is on packaging assemblies and structures and on simple meaningful practical models that can be (and actually have been) used in the mechanical (“physical”) design and reliability evaluations of electronic, opto-electronic, and photonic assemblies, structures, and systems. We indicate the role, objectives, attributes, merits, and shortcomings of analytical modeling and discuss its interaction with finite-element analysis (FEA) simulations and experimental techniques. Significant attention is devoted to the physics of the addressed problems and the rationale behind the described models. The addressed topics include (1) the pioneering Timoshenko’s analysis of bimetal thermostats and its extension for bimaterial assemblies of finite size and with consideration of the role of the bonding layer of finite compliance; this situation is typical for assemblies employed in electronics and photonics; (2) thermal stresses and strains in solder joints and interconnections; (3) attributes of the “global” and “local” thermal expansion (contraction) mismatch and the interaction of the induced stresses; (4) thermal stress in assemblies adhesively bonded at the ends and in assemblies (structural elements) with a low-modulus bonding layer at the ends (for lower interfacial stresses); (5) thin film systems; (6) thermal stress induced bow and bow-free assemblies subjected to the change in temperature; (7) predicted thermal stresses in, and the bow of, plastic packages of integrated circuit devices, with an emphasis on moisture-sensitive packages; (8) thermal stress in coated optical fibers and some other photonic structures; and (9) mechanical behavior of assemblies with thermally matched components (adherends). We formulate some general design recommendations for adhesively bonded or soldered assemblies subjected to thermal loading and indicate an incentive for a wider use of probabilistic methods in physical design for reliability of “high-technology” assemblies, including those subjected to thermal loading. Finally, we briefly address the role of thermal stress modeling in composite nanomaterials and nanostructures. It is concluded that analytical modeling should be used, whenever possible, along with computer-aided simulations (FEA) and accelerated life testing, in any significant engineering effort, when there is a need to analyze and design, in a fast, inexpensive, and insightful way, a viable, reliable, and cost-effective electronic, opto-electronic, or photonic assembly, package, or system.

1.
Lau
,
J. H.
, ed., 1993,
Thermal Stress and Strain in Microelectronics Packaging
,
Van Nostrand Reinhold
,
New York
.
2.
Suhir
,
E.
, 1988, “
Thermal Stress Failures in Microelectronic Components—Review and Extension
,”
Advances in Thermal Modeling of Electronic Components and Systems
,
A.
Bar-Cohen
and
A. D.
Kraus
, eds.,
Hemisphere
,
New York
.
3.
Sumi
,
S.
,
Ohga
,
K.
, and
Shirai
,
K.
, 1989, “
Thermal Fatigue of Large Scale Package Type Power Transistor Modules
,”
Proceedings of the International Symposium for Testing and Failure Analysis (ISTFA)
, Los Angeles, CA.
4.
Suhir
,
E.
,
Cammarata
,
R. C.
,
Chung
,
D. D. L.
, and
Jono
,
M.
, 1991, “
Mechanical Behavior of Materials and Structures in Microelectronics
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
226
.
5.
Suhir
,
E.
,
Shiratori
,
M.
,
Lee
,
Y. C.
, and
Subbarayan
,
G.
, eds., 1997,
Advances in Electronic Packaging—1997
,
ASME
,
New York
, Vols.
1
and 2.
6.
Suhir
,
E.
,
Fukuda
,
M.
, eds., 1998, “
Reliability of Photonic Materials and Structures
,” Mater. Res. Soc. Symp. Proc., 531.
7.
Suhir
,
E.
,
Michel
,
B.
,
Kishimoto
,
K.
, and
Lu
,
J.
, eds., 1998,
Mechanical Reliability of Polymeric Materials and Plastic Packages of IC Devices
,
ASME
,
New York
.
8.
Suhir
,
E.
, 1999, “
Thermal Stress Failures in Microelectronics and Photonics: Prediction and Prevention
,”
Future Circuits International
(
5
), pp.
83
89
.
9.
Suhir
,
E.
, 2000, “
Microelectronics and Photonics—The Future
,”
Microelectron. J.
,
31
(
11–12
), pp.
839
851
. 0026-2692
10.
Lang
,
G. A.
,
Fehder
,
B. J.
, and
Williams
,
W. D.
, 1970, “
Thermal Fatigue in Silicon Power Devices
,”
IEEE Trans. Electron Devices
0018-9383,
17
, pp.
787
793
.
11.
Taylor
,
H. F.
, eds., 1988,
Advances in Fiber Optics Communications
,
Artech House
,
Norwood, MA
.
12.
M.
Schen
,
H.
Abe
, and
E.
Suhir
, eds., 1994,
Thermal and Mechanical Behavior and Modeling
,
ASME
,
New York
, AMD-Vol.
13.
Suhir
,
E.
, 2001, “
Thermomechanical Stress Modeling in Microelectronics and Photonics
,”
Electronic Cooling
,
7
(
4
).
14.
Suhir
,
E.
, 2002, “
Accelerated Life Testing (ALT) in Microelectronics and Photonics: Its Role, Attributes, Challenges, Pitfalls, and Interaction With Qualification Tests
,” Keynote address at the
SPIE’s Seventh Annual International Symposium on Nondestructive Evaluations for Health Monitoring and Diagnostics
, San Diego, CA, Mar. 17–21.
15.
Suhir
,
E.
, 2005, “
Reliability and Accelerated Life Testing
,”
Semicond. Int.
0163-3767, Feb. 1.
16.
Suhir
,
E.
, 2000, “
Modeling of the Mechanical Behavior of Microelectronic and Photonic Systems: Attributes, Merits, Shortcomings, and Interaction With Experiment
,”
Proceedings of the Ninth International Congress on Experimental Mechanics
, Orlando, FL, Jun. 5–8.
17.
Suhir
,
E.
, 2002, “
Analytical Stress-Strain Modeling in Photonics Engineering: Its Role, Attributes and Interaction With the Finite-Element Method
,”
Laser Focus World
1043-8092,
14
, pp.
611
615
.
18.
Suhir
,
E.
, 1986, “
Stresses in Bi-Metal Thermostats
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
657
660
. 0021-8936
19.
Suhir
,
E.
, 1986, “
Calculated Thermally Induced Stresses in Adhesively Bonded and Soldered Assemblies
,”
Proceedings of the International Symposium on Microelectronics (ISHM)
, Atlanta, GA, Oct.
20.
Suhir
,
E.
, 1987, “
Die Attachment Design and Its Influence on the Thermally Induced Stresses in the Die and the Attachment
,”
Proceedings of the 37th Electronics Components Conference
,
IEEE
,
Boston, MA
, May, pp.
508
511
.
21.
Suhir
,
E.
, 1989, “
Interfacial Stresses in Bi-Metal Thermostats
,”
ASME J. Appl. Mech.
,
56
(
3
), pp.
595
600
. 0021-8936
22.
Kuo
,
A.
, 1989, “
Thermal Stresses at the Edge of a Bimetallic Thermostat
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
585
589
.
23.
Eischen
,
J. W.
,
Chung
,
C.
, and
Kim
,
J. H.
, 1990, “
Realistic Modeling of the Edge Effect Stresses in Bimaterial Elements
,”
ASME J. Electron. Packag.
,
112
(
1
), pp.
143
148
. 1043-7398
24.
Suhir
,
E.
, 2009, “
Thermal Stress in a Bi-Material Assembly With a “Piecewise-Continuous” Bonding Layer: Theorem of Three Axial Forces
,”
J. Phys. D: Appl. Phys.
0022-3727,
42
, pp.
508
517
.
25.
Suhir
,
E.
, 1991, “
Structural Analysis in Microelectronic and Fiber Optic Systems
,”
Basic Principles of Engineering Elasticity and Fundamentals of Structural Analysis
, Vol.
1
,
Van Nostrand Reinhold
,
New York
.
26.
Suhir
,
E.
, 1988, “
On a Paradoxical Phenomenon Related to Beams on Elastic Foundation: Could Compliant External Leads Reduce the Strength of a Surface Mounted Device?
,”
ASME J. Appl. Mech.
,
55
(
10
), pp.
818
821
. 0021-8936
27.
Suhir
,
E.
, 1993, “
Can the Curvature of an Optical Glass Fiber Be Different From the Curvature of Its Coating?
,”
Int. J. Solids Struct.
,
30
(
17
), pp.
2425
2435
. 0020-7683
28.
Suhir
,
E.
, and
Reinikainen
,
T.
, 2008, “
On a Paradoxical Situation Related to Lap Shear Joints: Could Transverse Grooves in the Adherends Lead to Lower Interfacial Stresses?
,”
J. Phys. D: Appl. Phys.
0022-3727,
41
(11), p.
115505
.
29.
Timoshenko
,
S.
, 1925, “
Analysis of Bi-Metal Thermostats
,”
J. Opt. Soc. Am.
0030-3941,
11
, pp.
233
243
.
30.
Papkovich
,
P. F.
, 1939,
Theory of Elasticity
,
Oboronizdat
,
Moscow, Russia
, in Russian.
31.
Aleck
,
B. J.
, 1949, “
Thermal Stresses in a Rectangular Plate Clamped Along an Edge
,”
ASME J. Appl. Mech.
0021-8936,
16
, pp.
118
122
.
32.
Namson
,
S. S.
, 1966,
Thermal Stress and Low Cycle Fatigue
,
McGraw-Hill
,
New York
.
33.
Boley
,
B. A.
, and
Weiner
,
J. H.
, 1974,
Theory of Thermal Stresses
,
Quantum
,
New York
.
34.
Noda
,
N.
,
Hetnarski
,
R. B.
, and
Tanigawa
,
Y.
, 2004,
Thermal Stress
, 2nd ed.,
Taylor & Francis
,
London
.
35.
Ceniga
,
L.
, 2008,
Analytical Models of Thermal Stresses in Composite Materials
,
Nova Science
,
New York
.
36.
Lanin
,
A.
, and
Fedik
,
I.
, 2008,
Thermal Stress Resistance of Materials
,
Springer
,
New York
.
37.
Suhir
,
E.
, 2007, “
Analytical Thermal Stress Modeling in Physical Design for Reliability of Micro- and Opto-Electronic Systems: Role, Attributes, Challenges, Results
,”
Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Packaging, Reliability
,
E.
Suhir
,
C. P.
Wong
, and
Y. C.
Lee
, eds.,
Springer
,
New York
.
38.
Padovan
,
J.
, 1986,
Anisotropic Thermal Stress Analysis
,
R. B.
Getnarski
, ed. (
Thermal Stresses
, Vol. I), pp.
143
262
.
39.
Carrera
,
E.
, 2000, “
An Assessment of Mixed and Classical Theories for the Thermal Stress Analysis of Orthotropic Multilayered Plates
,”
J. Therm. Stresses
0149-5739,
23
(
9
), pp.
797
831
.
40.
Zeyfang
,
R.
, 1971, “
Stresses and Strains in a Plate Bonded to a Substrate: Semiconductor Devices
,”
Solid-State Electron.
0038-1101,
14
, pp.
1035
1039
.
41.
Grimado
,
P. B.
, 1978, “
Interlaminated Thermo-Elastic Stresses in Layered Beams
,”
J. Therm. Stresses
0149-5739,
1
, pp.
75
86
.
42.
Chen
,
W. T.
, and
Nelson
,
C. W.
, 1979, “
Thermal Stresses in Bonded Joints
,”
IBM J. Res. Dev.
,
23
(
2
), pp.
179
188
. 0018-8646
43.
Chen
,
D.
,
Cheng
,
S.
, and
Geerhardt
,
T. D.
, 1982, “
Thermal Stresses in Laminated Beams
,”
J. Therm. Stresses
0149-5739,
5
, pp.
67
84
.
44.
Chang
,
F. -V.
, 1983, “
Thermal Contact Stresses of Bi-Metal Strip Thermostat
,”
Appl. Math. Mech.
0253-4827,
4
(
3
), pp.
347
360
.
45.
Bolger
,
J. C.
, and
Mooney
,
C. T.
, 1984, “
Die Attach in Hi-Rel P-DIPs: Polyimides or Low Chloride Epoxies?
,”
IEEE CPMT Transactions
,
CHMT-7
(
4
), pp.
238
243
.
46.
Yamada
,
S. E.
, 1992, “
A Bonded Joint Analysis for Surface Mount Components
,”
ASME J. Electron. Packag.
1043-7398,
114
(
1
), pp.
1
7
.
47.
Mishkevich
,
V.
, and
Suhir
,
E.
, 1993, “
Simplified Approach to the Evaluation of Thermally Induced Stresses in Bi-Material Structures
,”
Structural Analysis in Microelectronics and Fiber Optics
,
E.
Suhir
, ed.,
ASME
,
New York
.
48.
Hokanson
,
K. E.
, and
Bar-Cohen
,
A.
, 1995, “
Shear-Based Optimization of Adhesive Thickness for Die Bonding
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
18
(
3
), pp.
578
584
.
49.
Bar-Cohen
,
A.
, and
Witzman
,
S.
, 1995, “
Thermally-Induced Failures in Electronic Equipment—Field Reliability Modeling
,”
International Journal of Microelectronic Packaging
,
1
, pp.
1
12
.
50.
Gladkov
,
A.
, and
Bar-Cohen
,
A.
, 1999, “
Parametric Dependence of Fatigue of Electronic Adhesives
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
22
(
2
), pp.
1
5
.
51.
Bjorneklett
,
A.
,
Tuhus
,
T.
,
Halbo
,
L.
, and
Kristiansen
,
H.
, 1993, “
Thermal Resistance, Thermomechanical Stress and Thermal Cycling Endurance of Silicon Chips Bonded With Adhesives
,”
Proceedings of the Ninth Semiconductor Thermal Measurement and Management Symposium
, Austin, TX, Feb. 2–4.
52.
Peterson
,
D. W.
,
Sweet
,
J. N.
, and
Burchett
,
S. N.
, 1997, “
Validating Theoretical Calculations of Thermomechanical Stress and Deformation Using the ATC4.1 Flip-Chip Test Vehicle
,”
Proceedings of the Surface Mount International ’97
, San Jose, CA, Sept. 7–11.
53.
Zhao
,
J. -H.
,
Dai
,
X.
, and
Ho
,
P. S.
, 1998, “
Analysis and Modelling Verification for Thermal-Mechanical Deformation in Flip-Chip Packages
,”
Proceedings of the 48th Electronic Components and Technology Conference
, Seattle, WA, May 25–28.
54.
Gao
,
Y.
, and
Zhao
,
J. -H.
, 2000, “
A Practical Die Stress Model and Its Applications in Flip-Chip Packages
,”
Proceedings of the Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Las Vegas, NV, May 23–26.
55.
Huang
,
Y.
,
Hu
,
K. X.
,
Yeh
,
C. P.
,
Lee
,
N. -Y.
, and
Hwang
,
K. C.
, 1996, “
A Model Study of Thermal Stress-Induced Voiding in Electronic Packages
,”
ASME J. Electron. Packag.
1043-7398,
118
(
4
), pp.
1575
1586
.
56.
Luryi
,
S.
, and
Suhir
,
E.
, 1986, “
New Approach to the High Quality Epitaxial Growth of Lattice-Mismatched Materials
,”
Appl. Phys. Lett.
0003-6951,
49
(
3
), pp.
140
142
.
57.
Suhir
,
E.
, and
Sullivan
,
T. M.
, 1990, “
Analysis of Interfacial Thermal Stresses and Adhesive Strength of Bi-Annular Cylinders
,”
Int. J. Solids Struct.
0020-7683,
26
(
5–6
), pp.
581
600
.
58.
Cifuentes
,
A. O.
, 1991, “
Elastoplastic Analysis of Bimaterial Beams Subjected to Thermal Loads
,”
ASME J. Electron. Packag.
1043-7398,
113
(
4
), pp.
355
358
.
59.
Fan
,
H. B.
,
Yuen
,
M. F.
, and
Suhir
,
E.
, 2003, “
Prediction of Delamination in a Bi-Material System Based on Free-Edge Energy Evaluation
,”
53rd ECTC Proceedings
.
60.
Wen
,
Y.
, and
Basaran
,
C.
, 2004, “
An Analytical Model for Thermal Stress Analysis of Multi-Layered Microelectronics Packaging
,”
54th ECTC
.
61.
Jong
,
W. -R.
, and
Chang
,
M. -L.
, 2000, “
The Analysis of Warpage for Integrated Circuit Devices
,”
J. Reinf. Plast. Compos.
0731-6844,
19
(
2
), pp.
164
180
.
62.
Klein
,
C. A.
, 1990, “
Thermal Stress Modeling for Diamond-Coated Optical Windows
,”
22nd Annual Boulder Damage Symposium
, Boulder, CO, Oct. 24–26.
63.
Sujan
,
D.
,
Murthy
,
M. V. V.
,
Seetharamu
,
K. N.
, and
Hassan
,
A. Y.
, 2005, “
Engineering Model for Interfacial Stresses of a Heated Bimaterial Structure With Bond Material Used in Electronic Packages
,”
IMAPS Journal of Microelectronics and Electronic Packaging
,
2
(
2
), pp.
132
141
.
64.
Hsu
,
J. -S.
, and
Wang
,
W. C.
, 2002, “
Photoelastic Investigation on Thermal Stresses in Bonded Structures
,”
SPIE Congrès Experimental Mechanics
, Beijing, Oct. 15–17, 2001, Vol.
4537
.
65.
Hall
,
P. M.
,
Howland
,
F. L.
,
Kim
,
Y. S.
, and
Herring
,
L. H.
, 1990, “
Strains in Aluminum-Adhesive-Ceramic Trilayers
,”
ASME J. Electron. Packag.
1043-7398,
112
(
4
), pp.
288
302
.
66.
Suhir
,
E.
, 2001, “
Analysis of Interfacial Thermal Stresses in a Tri-Material Assembly
,”
J. Appl. Phys.
0021-8979,
89
(
7
), pp.
3685
3694
.
67.
Bhandarkar
,
S. M.
,
Dasgupta
,
A.
,
Barker
,
D.
,
Pecht
,
M.
, and
Engelmaier
,
W.
, 1992, “
Influence of Selected Design Variables on Thermo-Mechanical Stress Distributions in Plated-Through-Hole Structures
,”
ASME J. Electron. Packag.
1043-7398,
114
(
1
), pp.
8
13
.
68.
Suhir
,
E.
, and
Savastiuk
,
S.
, 2008, “
Disc-Like Copper Vias Fabricated in a Silicon Wafer: Design for Reliability
,”
IEEE ECTC
.
69.
Zhu
,
N.
,
Van Wyk
,
J. D.
, and
Liang
,
Z. X.
, 2004, “
Thermal-Mechanical Stress Analysis in Embedded Power Modules
,”
Proceedings of the Power Electronics Specialists Conference
.
70.
Lord
,
H. A.
, 1988, “
Thermal and Stress Analysis of Semiconductor Wafers in a Rapid Thermal Processing Oven
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
1
(
3
), pp.
105
114
.
71.
Riddle
,
R. A.
, 1993, “
Thermal Stresses in the Microchannel Heatsink Cooled by Liquid Nitrogen
,”
Proc. SPIE
0277-786X,
1997
, pp.
83
97
.
72.
Riddle
,
R. A.
, 1981, “
The Application of the J Integral to Fracture Under Mixed Mode Loading
,” Lawrence Livermore National Laboratory, Report No. UCRL-53182.
73.
Gillanders
,
J. T.
,
Riddle
,
R. A.
,
Streit
,
R. D.
, and
Finnie
,
I.
, 1990, “
Methods for Determining the Mode I and Mode II Fracture Toughness of Glass Using Thermal Stresses
,”
ASME J. Eng. Mater. Technol.
0094-4289,
112
(
2
), pp.
151
156
.
74.
John
,
R.
,
Hartman
,
G. A.
, and
Gallagher
,
J. P.
, 1992, “
Crack Growth Induced by Thermal-Mechanical Loading
,”
Exp. Mech.
,
32
(
2
), pp.
102
108
. 0014-4851
75.
Riddle
,
R. A.
,
Lesuer
,
D. R.
, and
Syn
,
C. K.
, 1996, “
Damage Initiation and Propagation in Metal Laminates
,” PVP (Am. Soc. Mech. Eng.), preprint UCRL-JC-122850.
76.
Bae
,
J. -S.
, and
Krishnaswamy
,
S.
, 2001, “
Subinterfacial Cracks in Bimaterial Systems Subjected to Mechanical and Thermal Loading
,”
Eng. Fract. Mech.
,
68
(
9
), pp.
1081
1094
. 0013-7944
77.
Tee
,
T. Y.
, and
Zhong
,
Z.
, 2004, “
Integrated Vapor Pressure, Hygroswelling, and Thermo-Mechanical Stress Modelling of QFN Package During Reflow With Interfacial Fracture Mechanics Analysis
,”
Microelectron. Reliab.
0026-2714,
44
, pp.
257
263
.
78.
Lau
,
J. H.
, 1989, “
A Note on the Calculation of Thermal Stresses in Electronic Packaging by Finite-Element Method
,”
ASME J. Electron. Packag.
1043-7398,
111
(
12
), pp.
595
600
.
79.
Glaser
,
J. C.
, 1990, “
Thermal Stresses in Compliantly Joined Materials
,”
ASME J. Electron. Packag.
1043-7398,
112
(
1
), pp.
24
29
.
80.
Akay
,
J. U.
, and
Tong
,
Y.
, 1993, “
Thermal Fatigue Analysis of an SMT Solder Joint Using FEM Approach
,”
Int. J. Microcircuits Electron. Packag.
,
116
, pp.
13
21
. 1043-7398
81.
Solomon
,
H. D.
, 1986, “
Fatigue of 60/40 Solder
,”
IEEE CPMT Transactions
,
CHMT-9
(
4
), pp.
91
104
.
82.
Suhir
,
E.
, 1989, “
Twist-Off Testing of Solder Joint Interconnections
,”
ASME J. Electron. Packag.
1043-7398,
111
(
3
), pp.
165
171
.
83.
Morgan
,
H. S.
, 1991, “
Thermal Stresses in Layered Electrical Assemblies Bonded With Solder
,”
ASME J. Electron. Packag.
1043-7398,
113
(
4
), pp.
350
354
.
84.
Hatsuda
,
T.
,
Doi
,
H.
, and
Hayasida
,
T.
, 1991, “
Thermal Strains in Flip-Chip Joints of Die-Bonded Chip Packages
,”
Proceedings of the EPS Conference
, San Diego.
85.
Suhir
,
E.
, 1991, “
Stress Relief in Solder Joints Due to the Application of a Flex Circuit
,”
ASME J. Electron. Packag.
1043-7398,
113
(
3
), pp.
240
243
.
86.
Suhir
,
E.
, 1996, “
Flex Circuit vs Regular” Substrate: Predicted Reduction in the Shearing Stress in Solder Joints
,”
Proceedings of the Third International Conference on Flexible Circuits (FLEXCON 96)
, San Jose, CA, Oct.
87.
Juskey
,
F.
, and
Carson
,
R.
, 1997, “
DCA on Flex: A Low Cost/Stress Approach
,”
Advances in Electronic Packaging
,
E.
Suhir
et al.
, eds.,
ASME
,
New York
.
88.
Darveaux
,
R.
, and
Banerji
,
K.
, 1992, “
Constitutive Relations for Tin-Based Solder Joints
,”
50th ECTC
.
89.
Suhir
,
E.
, 1994, “
Thermally Induced Stresses in an Optical Glass Fiber Soldered Into a Ferrule
,”
J. Lightwave Technol.
,
12
(
10
), pp.
1766
1770
. 0733-8724
90.
Lau
,
J.
, 1995,
Ball Grid Array Technology
,
McGraw-Hill
,
New York
.
91.
Hwang
,
J. S.
, 1996,
Modern Solder Technology for Competitive Electronics Manufacturing
,
McGraw-Hill
,
New York
.
92.
Iannuzzelli
,
R. J.
,
Pitarresi
,
J. M.
, and
Prakash
,
V.
, 1996, “
Solder Joint Reliability Prediction by the Integrated Matrix Creep Method
,”
ASME J. Electron. Packag.
1043-7398,
118
, pp.
1155
1166
.
93.
Buratynski
,
E. K.
, 1997, “
Analysis of Bending and Shearing of Tri-Layer Laminations for Solder Joint Reliability
,”
Advances in Electronic Packaging 1997
,
E.
Suhir
et al.
, eds.,
ASME
,
New York
.
94.
Gektin
,
V.
,
Bar-Cohen
,
A.
, and
Ames
,
J.
, 1997, “
Coffin-Manson Fatigue Model of Underfilled Flip-Chips
,”
IEEE CPMT Transactions—Part A
,
20
(
3
), pp.
253
262
.
95.
Gektin
,
V.
,
Bar-Cohen
,
A.
, and
Witzman
,
S.
, 1998, “
Coffin-Manson Based Fatigue Analysis of Underfilled DCA’s
,”
IEEE CPMT Transactions—Part A
,
21
(
4
), pp.
1
5
.
96.
Wilde
,
J.
,
Becker
,
K.
,
Thoben
,
M.
,
Blum
,
W.
,
Jupitz
,
T.
,
Wang
,
G.
, and
Cheng
,
Z. N.
, 2000, “
Rate Dependent Constitutive Relations Based on Anand Model for 92.5Pb5Sn2.5Ag Solder
,”
IEEE Trans. Adv. Packag.
1521-3323,
23
(
3
), pp.
350
357
.
97.
Cheng
,
Z. N.
,
Wang
,
G. Z.
,
Chen
,
L.
,
Wilde
,
J.
, and
Becker
,
K.
, 2000, “
Viscoplastic Anand Model for Solder Alloys and Its Application
,”
Soldering Surf. Mount Technol.
0954-0911,
12
(
2
), pp.
31
36
.
98.
Ghaffarian
,
R.
, 2000, “
Shock and Thermal Cycling Synergism Effects on Reliability of CBGA Assemblies
,”
IEEE Aerospace Conference Proceedings
.
99.
Fjelstad
,
J.
,
Ghaffarian
,
R.
, and
Kim
,
Y. G.
, 2002,
Chip Scale Packaging for Modern Electronics
,
ECTC
, pp.
458
466
.
100.
Ghaffarian
,
R.
, 2003, “
Qualification Approaches and Thermal Cycle Test Results for CSP/BGA/FCBGA
,”
Microelectron. Reliab.
,
43
(
5
), pp.
695
706
. 0026-2714
101.
Lau
,
J.
,
Chang
,
C.
, and
Lee
,
S. W. R.
, 2004, “
Thermal Fatigue Life Prediction Equation for Wafer-Level Chip-Scale Package Lead-Free Solder Joints on Lead-Free Printed Circuit Board
,”
54th ECTC
.
102.
Cui
,
H. H.
, 2005, “
Accelerated Temperature Cycle Test and Coffin-Manson Model for Electronic Packaging
,”
Proceedings of the Annual Reliability and Maintainability Symposium
, Jan. 24–27.
103.
Shangguan
,
D.
, 2005,
Lead-Free Solder Interconnect Reliability
,
ASM
.
104.
Ghaffarian
,
R.
, 2006, “
CCGA for Space Applications
,”
Microelectron. Reliab.
0026-2714,
46
, pp.
2006
2024
.
105.
Suhir
,
E.
, 1997, “
Solder Materials and Joints in Fiber Optics: Reliability Requirements and Predicted Stresses
,”
Proceedings of the International Symposium on Design and Reliability of Solders and Solder Interconnections
, Orlando, FL, Feb.
106.
Suhir
,
E.
, 2006, “
Interfacial Thermal Stresses in a Bi-Material Assembly With a Low-Yield-Stress Bonding Layer
,”
J. Phys. D: Appl. Phys.
0022-3727,
39
, pp.
4878
4885
.
107.
Ling
,
S.
, and
Dasgupta
,
A.
, 1997, “
A Nonlinear Multi-Domain Thermomechanical Stress Analysis Method for Surface-Mount Solder Joints—Part II: Viscoplastic Analysis
,”
ASME J. Electron. Packag.
1043-7398,
119
(
3
), pp.
177
182
.
108.
Coffin
,
L. F.
, 1954, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
ASME J. Appl. Mech.
0021-8936,
76
, pp.
931
950
.
109.
Manson
,
S. S.
, 1954, “
Behavior of Materials Under Conditions of Thermal Stress
,” Lewis Flight Propulsion Laboratory, NACA Report No. 1170.
110.
Coffin
,
L. F.
, 1959,
Internal Stress and Fatigue of Metals
,
Elsevier
,
New York
.
111.
Garofalo
,
F.
, 1965,
Fundamentals of Creep and Creep Fracture of Metals
,
McMillan
,
New York
.
112.
Anand
,
L.
, 1985, “
Constitutive Equations for Hot-Working of Metals
,”
Int. J. Plast.
,
1
(
2
), pp.
1423
1438
. 0749-6419
113.
Brown
,
S. B.
,
Kim
,
K. H.
, and
Anand
,
L.
, 1989, “
An Internal Variable Constitutive Model for Hot Working of Metals
,”
Int. J. Plast.
0749-6419,
5
(
2
), pp.
95
130
.
114.
Nelson
,
W.
, 1990, “
Accelerated Testing: Statistical Models, Test Plans and Data Analyses
,”
Thermal Stress and Strain in Solder Joint Interconnections
,
Wiley
,
New York
.
115.
Suhir
,
E.
, 1995, “
“Global” and “Local” Thermal Mismatch Stresses in an Elongated Bi-Material Assembly Bonded at the Ends
,”
Structural Analysis in Microelectronic and Fiber-Optic Systems Symposium Proceedings
,
E.
Suhir
, ed.,
ASME
,
New York
.
116.
Suhir
,
E.
, 2001, “
Thermal Stress in a Bi-Material Assembly Adhesively Bonded at the Ends
,”
J. Appl. Phys.
0021-8979,
89
(
1
), pp.
120
129
.
117.
Suhir
,
E.
, 2002, “
Bi-Material Assembly Adhesively Bonded at the Ends and Fabrication Method
,” U.S. Patent No. 6,460,753.
118.
Suhir
,
E.
, 1997, “
Predicted Thermal Mismatch Stresses in a Cylindrical Bi-Material Assembly Adhesively Bonded at the Ends
,”
ASME J. Appl. Mech.
0021-8936,
64
(
1
), pp.
15
22
.
119.
Suhir
,
E.
, 2003, “
Bimaterial Assembly With a Low Modulus Bonding Layer at the Ends
,”
J. Appl. Phys.
0021-8979,
93
(
6
), pp.
3657
3661
.
120.
Suhir
,
E.
, 2000, “
Electronic Assembly Having Improved Resistance to Delamination
,” U.S. Patent No. 6,028,772.
121.
Suhir
,
E.
, 2001, “
Thermal Stress in a Polymer Coated Optical Glass Fiber With a Low Modulus Coating at the Ends
,”
J. Mater. Res.
,
16
(
10
), pp.
2996
3004
. 0884-2914
122.
Suhir
,
E.
, 2003, “
Coated Optical Fiber
,” U.S. Patent No. 6,647,195.
123.
Suhir
,
E.
, 1989, “
Axisymmetric Elastic Deformations of a Finite Circular Cylinder With Application to Low Temperature Strains and Stresses in Solder Joints
,”
ASME J. Appl. Mech.
0021-8936,
56
(
2
), pp.
328
333
.
124.
Suhir
,
E.
, 1993, “
Mechanical Reliability of Flip-Chip Interconnections in Silicon-on-Silicon Multichip Modules
,”
IEEE Conference on Multichip Modules
,
IEEE
,
Santa Cruz, CA
, Mar.
125.
Suhir
,
E.
, and
Poborets
,
B.
, 1990, “
Solder Glass Attachment in Cerdip/Cerquad Packages: Thermally Induced Stresses and Mechanical Reliability
,”
ASME J. Electron. Packag.
1043-7398,
112
(
2
), pp.
204
209
.
126.
Suhir
,
E.
, 1999, “
Adhesively Bonded Assemblies With Identical Nondeformable Adherends: Predicted Thermal Stresses in the Adhesive Layer
,”
Compos. Interfaces
,
6
(
2
), pp.
135
154
. 0927-6440
127.
Suhir
,
E.
, 1998, “
Adhesively Bonded Assemblies With Identical Nondeformable Adherends and Inhomogeneous Adhesive Layer: Predicted Thermal Stresses in the Adhesive
,”
J. Reinf. Plast. Compos.
0731-6844,
17
(
14
), pp.
951
972
.
128.
Suhir
,
E.
, 2000, “
Adhesively Bonded Assemblies With Identical Nondeformable Adherends and “Piecewise Continuous” Adhesive Layer: Predicted Thermal Stresses and Displacements in the Adhesive
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
2229
2252
.
129.
Roll
,
K.
, 1976, “
Analysis of Stress and Strain Distribution in Thin Films and Substrates
,”
J. Appl. Phys.
0021-8979,
47
(
7
), pp.
3224
3229
.
130.
Olsen
,
G. H.
, and
Ettenberg
,
M.
, 1977, “
Calculated Stresses in Multilayered Heteroepitaxial Structures
,”
J. Appl. Phys.
0021-8979,
48
(
6
), pp.
2543
2547
.
131.
Hu
,
S. M.
, 1979, “
Film-Edge Induced Stresses in Substrates
,”
ASME J. Appl. Mech.
0021-8936,
50
(
7
), pp.
26
30
.
132.
Vilms
,
J.
, and
Kerps
,
D.
, 1982, “
Simple Stress Formula for Multilayered Thin Films on a Thick Substrate
,”
J. Appl. Phys.
0021-8979,
53
(
3
), pp.
1536
1537
.
133.
Suhir
,
E.
, 1988, “
An Approximate Analysis of Stresses in Multilayer Elastic Thin Films
,”
ASME J. Appl. Mech.
0021-8936,
55
(
3
), pp.
143
148
.
134.
Suhir
,
E.
, 1991, “
Approximate Evaluation of the Elastic Interfacial Stresses in Thin Films With Application to High-Tc Superconducting Ceramics
,”
Int. J. Solids Struct.
0020-7683,
27
(
8
), pp.
1025
1034
.
135.
Post
,
D.
, and
Wood
,
J. D.
, 1989, “
Determination of Thermal Strains by Moire Interferometry
,”
Exp. Mech.
0014-4851,
29
(
3
), pp.
318
322
.
136.
Pan
,
T. -Y.
, and
Pao
,
Y. -H.
, 1990, “
Deformation of Multilayer Stacked Assemblies
,”
ASME J. Electron. Packag.
1043-7398,
112
(
1
), pp.
30
34
.
137.
Strifler
,
W. A.
, and
Bates
,
C. W.
, Jr.
, 1991, “
Stress in Evaporated Films Used in GaAs Processing
,”
J. Mater. Res.
,
6
(
3
), pp.
548
552
. 0884-2914
138.
Suhir
,
E.
, 1994, “
Approximate Evaluation of the Elastic Thermal Stresses in a Thin Film Fabricated on a Very Thick Circular Substrate
,”
ASME J. Electron. Packag.
1043-7398,
116
(
3
), pp.
171
176
.
139.
Suhir
,
E.
, 2000, “
Predicted Thermally Induced Stresses In, and the Bow of, a Circular Substrate/Thin-Film Structure
,”
J. Appl. Phys.
0021-8979,
88
(
5
), pp.
2363
2370
.
140.
Pecht
,
M.
,
Wu
,
X.
,
Paik
,
K. W.
, and
Bhandarkar
,
S. N.
, 1995, “
To Cut or Not to Cut: A Thermomechanical Stress Analysis of Polyimide Thin-Film on Ceramics Structures
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
1070-9894,
18
(
1
), pp.
150
153
.
141.
Noor
,
A. K.
, and
Malik
,
M.
, 2000, “
An Assessment of Five Modelling Approaches for Thermo-Mechanical Stress Analysis of Laminated Composite Panels
,”
Comput. Mech.
0178-7675,
25
, pp.
43
58
.
142.
Suhir
,
E.
, 1989, “
Applications of an Epoxy Cap in a Flip-Chip Package Design
,”
ASME J. Electron. Packag.
1043-7398,
111
(
1
), pp.
233
255
.
143.
van Doorselaer
,
K.
, and
deZeeuw
,
K.
, 1990, “
Relation Between Delamination and Temperature Cycling Induced Failures in Plastic Package Devices
,”
40th ECTC
.
144.
Pendse
,
R.
, and
Demmin
,
J.
, 1990, “
Test Structures and Finite Element Models for Chip Stress and Plastic Package Reliability
,”
IEEE Conference on Microelectronic Test Structures
, San Diego.
145.
Ganssan
,
G. S.
, and
Berg
,
H.
, 1993, “
Model and Analysis for Reflow Cracking Phenomenon in SMT Plastic Packages
,”
43rd IEEE ECTC
.
146.
Suhir
,
E.
, and
Ilyas
,
Q. S. M.
, 1996, “
“Thick” Plastic Packages With “Small” Chips vs “Thin” Packages With “Large” Chips: How Different Is Their Propensity to Moisture Induced Failures?
,”
Structural Analysis in Micro-electronics and Fiber Optics Symposium Proceedings
,
E.
Suhir
, ed.,
ASME
,
New York
.
147.
Uschitsky
,
M.
, and
Suhir
,
E.
, 1996, “
Predicted Thermally Induced Stresses in an Epoxy Molding Compound at the Chip Corne
r,”
Structural Analysis in Microelectronics and Fiber Optics Symposium Proceedings
,
E.
Suhir
, ed.,
ASME
,
New York
.
148.
Suhir
,
E.
, 1997, “
Failure Criterion for Moisture-Sensitive Plastic Packages of Integrated Circuit (IC) Devices: Application of von-Karman Equations With Consideration of Thermoelastic Strains
,”
Int. J. Solids Struct.
,
34
(
12
), pp.
2991
3019
. 0020-7683
149.
Shin
,
D. K.
, and
Lee
,
J. J.
, 1997, “
A Study on the Mechanical Behavior of Epoxy Molding Compound and Thermal Stress Analysis in Plastic Packaging
,”
Advances in Electronic Packaging 1997
,
E.
Suhir
et al.
, eds.,
ASME
,
New York
, Vol.
1
.
150.
Ushitsky
,
M.
,
Suhir
,
E.
, and
Kammlott
,
G. W.
, 2001, “
Thermoelastic Behavior of Filled Molding Compounds: Composite Mechanics Approach
,”
ASME J. Electron. Packag.
,
123
(
4
), pp.
27
31
. 1043-7398
151.
Kirk
,
J. J.
,
Tor
,
J. L.
,
Guven
,
J. L.
,
Madenci
,
I.
,
Mertol
,
E.
, and
Kutke
,
A.
, 2004, “
Experimental Validation of Hydro/Thermo-Mechanical Simulations for Multi-Material Polymer Structures
,”
54th ECTC
.
152.
Slattery
,
O.
,
Hayes
,
T.
,
Lawton
,
W.
,
Kelly
,
G.
,
Lyden
,
C.
,
Barrett
,
J.
, and
O’Mathuna
,
C.
, 1995, “
Methods of Analysing Thermomechanical Stress in Plastic Packages for Integrated Circuits
,”
J. Mater. Process. Technol.
0924-0136,
54
(
1–4
), pp.
199
204
.
153.
Shin
,
D. K.
, and
Lee
,
J. J.
, 1998, “
Effective Material Properties and Thermal Stress Analysis of Epoxy Molding Compound in Electronic Packaging
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
1070-9894,
21
(
4
), pp.
1
8
.
154.
Suhir
,
E.
, 1993, “
Predicted Bow of Plastic Packages of Integrated Circuit Devices
,”
Thermal Stress and Strain in Microelectronic Packaging
,
J. H.
Lau
, ed.,
Van Nostrand Reinhold
,
New York
.
155.
Suhir
,
E.
, and
Weld
,
J.
, 1997, “
Electronic Package With Reduced Bending Stress
,” U.S. Patent No. 5,627,407.
156.
Suhir
,
E.
, 2001, “
Arrangement for Reducing Bending Stress in an Electronics Package
,” U.S. Patent No. 6,180,241.
157.
Suhir
,
E.
, 2001, “
Device and Method of Controlling the Bowing of a Soldered or Adhesively Bonded Assembly
,” U.S. Patent No. 6,239,382.
158.
Suhir
,
E.
, 2003, “
Bow Free Adhesively Bonded Assemblies: Predicted Stresses
,”
Electrotechnik & Informationtechnik
,
120
(
6
), pp.
B12/1
B12/4
.
159.
Suhir
,
E.
, 2004, “
Bow-Free Assemblies: Predicted Stresses
,”
Therminic’2004
, Nice, France, Sept. 29–Oct. 1.
160.
Suhir
,
E.
, 1988, “
Stresses in Dual-Coated Optical Fibers
,”
ASME J. Appl. Mech.
,
55
(
10
), pp.
1169
1171
. 0021-8936
161.
Suhir
,
E.
, 1998, “
Fiber Optic Structural Mechanics: Brief Review
,”
ASME J. Electron. Packag.
1043-7398,
120
(
3
), pp.
217
220
.
162.
Suhir
,
E.
, 2003, “
Polymer Coated Optical Glass Fibers: Review and Extension
,”
Proceedings of the POLYTRONIK’2003
, Montreaux, Oct. 21–24.
163.
Bubel
,
G. M.
,
Krause
,
J. T.
,
Bickta
,
B. J.
, and
Kee
,
R. T.
, 1989, “
Mechanical Reliability of Metallized Optical Fiber for Hermetic Terminations
,”
J. Lightwave Technol.
0733-8724,
7
(
10
), pp.
1488
1493
.
164.
Suhir
,
E.
, 1990, “
Mechanical Approach to the Evaluation of the Low Temperature Threshold of Added Transmission Losses in Single-Coated Optical Fibers
,”
J. Lightwave Technol.
0733-8724,
8
(
6
), pp.
863
868
.
165.
Shiue
,
S. T.
, 1994, “
Thermal Stresses in Tightly Jacketed Double-Coated Optical Fibers at Low Temperature
,”
J. Appl. Phys.
0021-8979,
76
(
12
), pp.
7695
7703
.
166.
Suhir
,
E.
, and
Vuillamin
,
J. J.
, Jr.
, 2000, “
Effects of the CTE and Young’s Modulus Lateral Gradients on the Bowing of an Optical Fiber: Analytical and Finite Element Modeling
,”
Opt. Eng. (Bellingham)
,
39
(
12
), pp.
749
757
. 0091-3286
167.
Muraoka
,
M.
, 2001, “
The Maximum Stress in Optical Glass Fibers Under Two-Point Bending
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
70
73
.
168.
Suhir
,
E.
, 2002, “
Apparatus and Method for Thermostatic Compensation of Temperature Sensitive Devices
,” U.S. Patent No. 6,337,932.
169.
Suhir
,
E.
, 2003, “
Optical Fiber Interconnects Having Offset Ends With Reduced Tensile Strength and Fabrication Method
,” U.S. Patent No. 6,606,434.
170.
Gebizioglu
,
O. S.
, and
Plitz
,
I. M.
, 1991, “
Self-Stripping of Optical Fiber Coatings in Hydrocarbon Liquids and Cable Filling Compounds
,”
Opt. Eng. (Bellingham)
0091-3286,
30
(
6
), pp.
749
762
.
171.
Riddle
,
R. A.
, 1991, “
Prediction of Damage in Optical Coatings Due to Thermal Stresses Caused by the Bulk Absorption of X-Rays
,”
J. Therm. Stresses
,
14
, pp.
319
334
. 0149-5739
172.
Devadoss
,
E.
, 1992, “
Polymers for Optical Fiber Communication Systems
,”
J. Sci. Ind. Res.
,
51
(
4
), pp.
4109
4112
. 0022-4456
173.
Shiue
,
S. T.
, 1994, “
The Hydrostatic Pressure Induced Stresses in Double-Coated Optical Fibers
,”
Journal of the Chinese Institute of Engineers
,
17
(
4
), pp.
D31
35
.
174.
Shiue
,
S. T.
, and
Lee
,
W. H.
, 1997, “
Thermal Stresses in Carbon Coated Optical Fibers at Low Temperature
,”
J. Mater. Res.
,
12
(
9
), pp.
2493
2498
. 0884-2914
175.
King
,
W. W.
, and
Aloisio
,
C. J.
, 1997, “
Thermomechanical Mechanism for Delamination of Polymer Coatings From Optical Fibers
,”
ASME J. Electron. Packag.
1043-7398,
119
(
2
), pp.
133
137
.
176.
Suhir
,
E.
, 1988, “
Effect of Initial Curvature on Low Temperature Microbending in Optical Fibers
,”
J. Lightwave Technol.
0733-8724,
6
(
8
), pp.
1321
1327
.
177.
Suhir
,
E.
, 1988, “
Spring Constant in the Buckling of Dual-Coated Optical Fibers
,”
J. Lightwave Technol.
0733-8724,
6
(
7
), pp.
1240
1244
.
178.
Shiue
,
S. T.
, and
Lee
,
S. B.
, 1992, “
Thermal Stresses in Double-Coated Optical Fibers at Low Temperature
,”
J. Appl. Phys.
0021-8979,
72
(
1
), pp.
18
23
.
179.
Shiue
,
S. T.
, 1992, “
Design of Double-Coated Optical Fibers to Minimize Hydrostatic-Pressure-Induced Microbending Losses
,”
IEEE Photonics Technol. Lett.
1041-1135,
4
(
7
), pp.
746
748
.
180.
Cocchini
,
F.
, 1994, “
Double-Coated Optical Fibers Undergoing Temperature Variations: The Influence of the Mechanical Behavior on the Added Transmission Losses
,”
Polym. Eng. Sci.
0032-3888,
34
(
5
), pp.
414
419
.
181.
Shiue
,
S. T.
, 1994, “
Thermally Induced Microbending Losses in Double-Coated Optical Fibers at Low Temperature
,”
Mater. Chem. Phys.
0254-0584,
38
(
2
), pp.
187
190
.
182.
Shiue
,
S. T.
, 1997, “
The Spring Constant in the Buckling of Tightly Jacketed Double-Coated Optical Fibers
,”
J. Appl. Phys.
0021-8979,
81
(
8
), pp.
3363
3368
.
183.
Suhir
,
E.
, 1998, “
Coated Optical Fiber Interconnect Subjected to the Ends Off-Set and Axial Loading
,”
International Workshop on Reliability of Polymeric Materials and Plastic Packages of IC Devices
, Paris, Nov. 29–Dec. 2,
ASME
,
New York
.
184.
Suhir
,
E.
, 2000, “
Optical Fiber Interconnect With the Ends Offset and Axial Loading: What Could Be Done to Reduce the Tensile Stress in the Fiber?
,”
J. Appl. Phys.
0021-8979,
88
(
7
), pp.
3865
3871
.
185.
Suhir
,
E.
, 1998, “
Critical Strain and Postbuckling Stress in Polymer Coated Optical Fiber Interconnect: What Could Be Gained by Using Thicker Coating?
,”
International Workshop on Reliability of Polymeric Materials and Plastic Packages of IC Devices
, Paris, Nov. 29–Dec. 2,
ASME
, New York.
186.
Shiue
,
S. T.
, 1994, “
The Axial Strain-Induced Stresses in Double-Coated Optical Fibers
,”
Journal of the Chinese Institute of Engineers
,
17
(
1
), pp.
727
729
.
187.
Kim
,
K. J.
, and
Bar-Cohen
,
A.
, 2003, “
Thermo-Optical Behavior of Passively-Cooled Polymer Waveguides
,”
Proceedings of the ASME IMECE Conference
, Washington, DC, Nov.
188.
Kim
,
K. J.
,
Bar-Cohen
,
A.
, and
Han
,
B. T.
, 2004, “
Thermo-Optical Characteristics of Bragg Grating Polymer Waveguides
,”
First International Symposium on Micro and Nano Technology
, Honolulu, HI, Mar.
189.
Suhir
,
E.
, 2007, “
Elastic Stability of a Dual-Coated Optical Fiber of Finite Length
,”
J. Appl. Phys.
0021-8979,
102
(
4
), p.
043107
.
190.
Suhir
,
E.
, 2007, “
Elastic Stability of a Dual-Coated Optical Fiber With a Stripped Off Coating at Its End
,”
J. Appl. Phys.
0021-8979,
102
(
3
), p.
033109
.
191.
Suhir
,
E.
, 1993, “
Predicted Stresses and Strains in Fused Biconical Taper Couplers Subjected to Tension
,”
Appl. Opt.
,
32
(
18
), pp.
3237
3240
. 0003-6935
192.
Liu
,
X.
, and
Lu
,
B. K.
, 2004, “
Comparison Between Epi-Down and Epi-Up Bonded High-Power Single-Mode 980-nm Semiconductor Lasers
,”
IEEE Trans. Adv. Packag.
1521-3323,
27
(
4
), pp. pp.
640
646
.
193.
Liu
,
X.
,
Wang
,
J.
, and
Wei
,
P.
, 2008, “
Study of the Mechanisms of Spectral Broadening in High Power Semiconductor Laser Arrays
,
ECTC
.
194.
Suhir
,
E.
, 1997,
Applied Probability for Engineers and Scientists
,
McGraw-Hill
,
New York
.
195.
Suhir
,
E.
, 1997, “
Probabilistic Approach to Evaluate Improvements in the Reliability of Chip-Substrate (Chip-Card) Assembly
,”
IEEE CPMT Transactions, Part A
,
20
(
1
), pp.
60
63
.
196.
Suhir
,
E.
, 2000, “
Thermal Stress Modeling in Microelectronics and Photonics Packaging, and the Application of the Probabilistic Approach: Review and Extension
,”
Int. J. Microcircuits Electron. Packag.
1063-1674,
23
(
2
), pp.
215
223
.
197.
Suhir
,
E.
, 2004, “
Polymer Coated Optical Glass Fiber Reliability: Could Nano-Technology Make a Difference?
,”
Polytronic’04
, Portland, OR, pp.
13
15
.
198.
Lee
,
S. C.
,
Dawson
,
L. R.
,
Pattada
,
B.
,
Brueck
,
S. R. J.
,
Jiang
,
Y.-B.
, and
Xu
,
H.
, 2004, “
Strain-Relieved, Dislocation-Free InxGa1−xAs/GaAs(001) Hetero-Structure by Nanoscale-Patterned Growth
,”
Appl. Phys. Lett.
0003-6951,
85
(
18
), pp.
4181
4183
.
199.
Suhir
,
E.
, 2005, “
New Nano-Particle Material (NPM) for Micro- and Opto-Electronic Packaging Applications
,”
IEEE Workshop on Advanced Packaging Materials
, Irvine, CA, Mar.
200.
Suhir
,
E.
, and
Ingman
,
D.
, 2006, “
Highly Compliant Bonding Material and Structure for Micro- and Opto-Electronic Applications
,”
ECTC’06 Proceedings
, San Diego, May.
201.
Ingman
,
D.
, and
Suhir
,
E.
, 2007, “
Optical Fiber With Nano-Particle Overclad
,” U.S. Patent No. 7,162,138.
202.
Ingman
,
D.
, and
Suhir
,
E.
, 2007, “
Optical Fiber With Nano-Particle Cladding
,” U.S. Patent No. 7,162,137.
203.
Suhir
,
E.
, 2007, “
Apparatus and Test Device for the Application and Measurement of Prescribed, Predicted and Controlled Contact Pressure on Wires
,” U.S. Patent No. 7,279,916.
204.
Suhir
,
E.
, 2007, “
Fiber-Optics Structural Mechanics and Nano-Technology Based New Generation of Fiber Coatings: Review and Extension
,”
Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Packaging, Reliability
,
E.
Suhir
,
C. P.
Wong
, and
Y. C.
Lee
, eds.,
Springer
,
New York
.
205.
Suhir
,
E.
, and
Ingman
,
D.
, 2007, “
Highly Compliant Bonding Material and Structure for Micro- and Opto-Electronic Applications
,”
Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Packaging, Reliability
,
E.
Suhir
,
C. P.
Wong
, and
Y. C.
Lee
, eds.,
Springer
,
New York
.
206.
Mirer
,
T.
,
Ingman
,
D.
, and
Suhir
,
E.
, 2007, “
Reliability Improvement Through Nano-Particle-Material-Based Fiber Structures
,”
Opt. Fiber Technol.
1068-5200,
13
, pp.
27
31
.
207.
Suhir
,
E.
, 2007, “
Polymeric Coating of Optical Silica Fibers, and a Nanomaterial-Based Coating System
,” Keynote Presentation,
Polytronic’2007, Proceedings of the International Conference on Polymeric Materials for Micro- and Opto-Electronics Applications
, Tokyo, Japan, Jan. 14–16.
208.
Xu
,
Y.
,
Zhang
,
Y.
,
Suhir
,
E.
, and
Wang
,
X.
, 2006, “
Thermal Properties of Carbon Nanotube Array for Integrated Circuits Cooling
,”
J. Appl. Phys.
0021-8979,
100
, p.
074302
.
209.
Zhang
,
Y.
,
Xu
,
Y.
, and
Suhir
,
E.
, 2006, “
Effect of Rapid Thermal Annealing (RTA) on Thermal Properties of Carbon Nanofibre (CNF) Arrays
,”
J. Phys. D
0022-3727,
39
, p.
4878
.
210.
Zhang
,
Y.
,
Xu
,
Y.
, and
Suhir
,
E.
, 2006, “
Effective Young’s Modulus of Carbon Nanofiber Array
,”
J. Mater. Res.
,
21
(
11
), p.
2922
. 0884-2914
211.
Zhang
,
Y.
,
Suhir
,
E.
,
Xu
,
Y.
, and
Gu
,
C.
, 2006, “
Bonding Strength of Carbon Nanofiber Array to Its Substrate
,”
J. Mater. Res.
,
21
(
11
), pp.
230
232
. 0884-2914
212.
Zhang
,
Y.
,
Xu
,
Y.
,
Gu
,
C.
, and
Suhir
,
E.
, 2006, “
Predicted Shear-Off Stress in Bonded Assemblies: Review and Extension
,”
ASTR 2006
, San Francisco, CA.
213.
Zhang
,
Y.
,
Xu
,
Y.
,
Suhir
,
E.
,
Gu
,
C.
, and
Liu
,
X.
, 2008, “
Compliance Properties Study of Carbon Nanofiber (CNF) Array as Thermal Interface Materials
,”
J. Phys. D
,
41
, p.
155105
. 0022-3727
214.
Ingman
,
D.
,
Ogenko
,
V.
,
Suhir
,
E.
, and
Glista
,
A.
, 2008, “
Moisture Resistant Nano-Particle Material and Its Applications
,” U.S. Patent No. 7,321,714.
215.
Zhang
,
Y.
,
Suhir
,
E.
, and
Gu
,
C.
, “
Carbon Nanotubes/Nanofibers as Thermal Interface Materials (TIMs): Physical/Mechanical Properties and Requirements
,” Invited Review Paper, Taiwan, to be published.
You do not currently have access to this content.