In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the past 10 years. The scope of this review concerns the self-organization of two-dimensional Navier–Stokes turbulence, the quasi-stationary final states in domains with no-slip boundaries, the role of the lateral no-slip walls on two-dimensional turbulence, and their role on the possible destabilization of domain-sized vortices. The overview of the laboratory experiments on quasi-two-dimensional turbulence is restricted to include only those carried out in thin electromagnetically forced shallow fluid layers and in stratified fluids. The effects of the quasi-two-dimensional character of the turbulence in the laboratory experiments will be discussed briefly. As a supplement, the main results from numerical simulations of forced and decaying two-dimensional turbulence in rectangular and circular domains, thus explicitly taking into account the lateral sidewalls, will be summarized and compared with the experimental observations.

1.
Kraichnan
,
R. H.
, and
Montgomery
,
D.
, 1980, “
Two-Dimensional Turbulence
,”
Rep. Prog. Phys.
0034-4885,
43
, pp.
547
619
.
2.
Danilov
,
S. D.
, and
Gurarie
,
D.
, 2000, “
Quasi-Two-Dimensional Turbulence
,”
Phys. Usp.
1063-7869,
43
, pp.
863
900
.
3.
Tabeling
,
P.
, 2002, “
Two-Dimensional Turbulence: A Physicist Approach
,”
Phys. Rep.
0370-1573,
362
, pp.
1
62
.
4.
Kellay
,
H.
, and
Goldburg
,
W. I.
, 2002, “
Two-Dimensional Turbulence: A Review of Some Recent Experiments
,”
Rep. Prog. Phys.
0034-4885,
65
, pp.
845
894
.
5.
Doering
,
C. H.
, and
Newton
,
P. K.
, 2007, “
Introduction to Special Issue: Mathematical Fluid Dynamics
,”
J. Math. Phys.
0022-2488,
48
, p.
065101
(see also other contributions in this issue).
6.
Onsager
,
L.
, 1949, “
Statistical Hydrodynamics
,”
Nuovo Cimento
0029-6341,
6
, pp.
279
287
.
7.
Fjørtoft
,
R.
, 1953, “
On the Changes in the Spectral Distribution of Kinetic Energy for Two-Dimensional Non-Divergent Flow
,”
Tellus
,
5
, pp.
225
230
. 0040-2826
8.
Lee
,
T. D.
, 1952, “
On Some Statistical Properties of Hydrodynamical and Magneto-Hydrodynamical Fields
,”
Q. Appl. Math.
,
10
, pp.
69
74
. 0033-569X
9.
Similar statements can be made for ideal 3D turbulence and ideal 2D and 3D magnetohydrodynamic turbulence.
10.
Kraichnan
,
R. H.
, 1967, “
Inertial Ranges in Two-Dimensional Turbulence
,”
Phys. Fluids
0031-9171,
10
, pp.
1417
1423
.
11.
Shebalin
,
J. V.
, 1989, “
Broken Ergodicity and Coherent Structure in Homogeneous Turbulence
,”
Physica D
0167-2789,
37
, pp.
173
191
.
12.
Shebalin
,
J. V.
, 1998, “
Phase Space Structure in Ideal Homogeneous Turbulence
,”
Phys. Lett. A
0375-9601,
250
, pp.
319
322
.
13.
Kraichnan
,
R. H.
, 1971, “
Inertial-Range Transfer in Two and Three-Dimensional Turbulence
,”
J. Fluid Mech.
0022-1120,
47
, pp.
525
535
.
14.
Leith
,
C. E.
, 1968, “
Diffusion Approximation for Two-Dimensional Turbulence
,”
Phys. Fluids
0031-9171,
11
, pp.
671
673
.
15.
Batchelor
,
G. K.
, 1969, “
Computation of the Energy Spectrum in Homogeneous Two-Dimensional Turbulence
,”
Phys. Fluids
0031-9171,
12
, pp.
II
-233–II-
239
.
16.
Lilly
,
D.
, 1969, “
Numerical Simulation of Two-Dimensional Turbulence
,”
Phys. Fluids
0031-9171,
12
, pp.
II
-240–II-
249
.
17.
In this review we do not devote much space to the role of different forcing functions to drive 2D turbulence. The most obvious distinction is between random forcing in space and fixed steady-state forcing in some wave number band. These do not necessarily lead to the same flow configurations. This difference is particularly relevant for the question regarding what constitutes and what is to be expected from the forcing in real experimental configurations as can be found in the laboratory and in large-scale geophysical and planetary flows.
18.
Boffetta
,
G.
, 2007, “
Energy and Enstrophy Fluxes in the Double Cascade of Two-Dimensional Turbulence
,”
J. Fluid Mech.
,
589
, pp.
253
260
. 0022-1120
19.
Fyfe
,
D.
,
Montgomery
,
D.
, and
Joyce
,
G.
, 1977, “
Dissipative, Forced Turbulence in Two-Dimensional Magnetohydrodynamics
,”
J. Plasma Phys.
,
17
, pp.
369
398
. 0022-3778
20.
Hossain
,
M.
,
Matthaeus
,
W. H.
, and
Montgomery
,
D.
, 1983, “
Long-Time States of Inverse Cascades in the Presence of a Maximum Length Scale
,”
J. Plasma Phys.
,
30
, pp.
479
493
. 0022-3778
21.
Frisch
,
U.
, and
Sulem
,
P. -L.
, 1984, “
Numerical Simulation of the Inverse Cascade in Two-Dimensional Turbulence
,”
Phys. Fluids
0031-9171,
27
, pp.
1921
1923
.
22.
Herring
,
J. R.
, and
McWilliams
,
J. C.
, 1985, “
Comparison of Direct Numerical Simulation of Two-Dimensional Turbulence With Two-Point Closure: The Effects of Intermittency
,”
J. Fluid Mech.
0022-1120,
153
, pp.
229
242
.
23.
Siggia
,
E. D.
, and
Aref
,
H.
, 1981, “
Point-Vortex Simulation of the Inverse Energy Cascade in Two-Dimensional Turbulence
,”
Phys. Fluids
0031-9171,
24
, pp.
171
173
.
24.
Smith
,
L. M.
, and
Yakhot
,
V.
, 1993, “
Bose Condensation and Small-Scale Structure Generation in a Random Force Driven 2D Turbulence
,”
Phys. Rev. Lett.
0031-9007,
71
, pp.
352
355
.
25.
Chertkov
,
M.
,
Connaughton
,
C.
,
Kolokolov
,
I.
, and
Lebedev
,
V.
, 2007, “
Dynamics of Energy Condensation in Two-Dimensional Turbulence
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
084501
.
26.
Borue
,
V.
, 1994, “
Inverse Energy Cascade in Stationary Two-Dimensional Homogeneous Turbulence
,”
Phys. Rev. Lett.
0031-9007,
72
, pp.
1475
1478
.
27.
Danilov
,
S.
, and
Gurarie
,
D.
, 2001, “
Nonuniversal Features of Forced Two-Dimensional Turbulence in the Energy Range
,”
Phys. Rev. E
1063-651X,
63
, p.
020203
.
28.
Boffetta
,
G.
,
Celani
,
A.
, and
Vergassola
,
M.
, 2000, “
Inverse Energy Cascade in Two-Dimensional Turbulence: Deviations From Gaussian Behavior
,”
Phys. Rev. E
1063-651X,
61
, pp.
R29
R32
.
29.
Chen
,
S.
,
Ecke
,
R. E.
,
Eyink
,
G. L.
,
Rivera
,
M.
,
Wan
,
M.
, and
Xiao
,
Z.
, 2006, “
Physical Mechanism of the Two-Dimensional Inverse Energy Cascade
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
084502
.
30.
Saffman
,
P. G.
, 1995,
Vortex Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
31.
Moffatt
,
H. K.
, 1986,
Advances in Turbulence
,
G.
Comte-Bellot
and
J.
Mathieu
, eds.,
Springer
,
Berlin
, p.
284
.
32.
Legras
,
B.
,
Santangelo
,
P.
, and
Benzi
,
R.
, 1988, “
High-Resolution Numerical Experiments for Forced Two-Dimensional Turbulence
,”
Europhys. Lett.
0295-5075,
5
, pp.
37
42
.
33.
Ohkitani
,
K.
, 1991, “
Wave Number Space Dynamics of Enstrophy Cascade in a Forced Two-Dimensional Turbulence
,”
Phys. Fluids A
0899-8213,
3
, pp.
1598
1611
.
34.
Maltrud
,
M. E.
, and
Vallis
,
G. K.
, 1991, “
Energy Spectra and Coherent Structures in Forced Two-Dimensional and Beta-Plane Turbulence
,”
J. Fluid Mech.
,
228
, pp.
321
342
. 0022-1120
35.
Borue
,
V.
, 1993, “
Spectral Exponents of Enstrophy Cascade in Stationary Two-Dimensional Homogeneous Turbulence
,”
Phys. Rev. Lett.
0031-9007,
71
, pp.
3967
3970
.
36.
Gotoh
,
T.
, 1998, “
Energy Spectrum in the Inertial and Dissipation Ranges of Two-Dimensional Steady Turbulence
,”
Phys. Rev. E
1063-651X,
57
, pp.
2984
2991
.
37.
Lindborg
,
E.
, and
Älvelius
,
K.
, 2000, “
The Kinetic Energy Spectrum of the Two-Dimensional Enstrophy Turbulent Cascade
,”
Phys. Fluids
1070-6631,
12
, pp.
945
947
.
38.
Ishihara
,
T.
, and
Kaneda
,
Y.
, 2001, “
Energy Spectrum in the Enstrophy Transfer Range of Two-Dimensional Forced Turbulence
,”
Phys. Fluids
1070-6631,
13
, pp.
544
547
.
39.
Pasquero
,
C.
, and
Falkovich
,
G.
, 2002, “
Stationary Spectrum of Vorticity Cascade in Two-Dimensional Turbulence
,”
Phys. Rev. E
1063-651X,
65
, p.
056305
.
40.
Chen
,
S.
,
Ecke
,
R. E.
,
Eyink
,
G. L.
,
Wang
,
X.
, and
Xiao
,
Z.
, 2003, “
Physical Mechanism of the Two-Dimensional Enstrophy Cascade
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
214501
.
41.
Tran
,
C. V.
, and
Shepherd
,
T. G.
, 2002, “
Constraints on the Spectral Distribution of Energy and Enstrophy Dissipation in Forced Two-Dimensional Turbulence
,”
Physica D
0167-2789,
165
, pp.
199
212
.
42.
Tran
,
C. V.
, and
Bowman
,
J. C.
, 2003, “
On the Dual Cascade in Two-Dimensional Turbulence
,”
Physica D
0167-2789,
176
, pp.
242
255
.
43.
Alexakis
,
A.
, and
Doering
,
C. R.
, 2006, “
Energy and Enstrophy Dissipation in Steady State 2D Turbulence
,”
Phys. Lett. A
0375-9601,
359
, pp.
652
657
.
44.
Eyink
,
G. L.
, 1996, “
Exact Results on Stationary Turbulence in 2D: Consequences of Vorticity Conservation
,”
Physica D
0167-2789,
91
, pp.
97
142
.
45.
Dubos
,
T.
, and
Babiano
,
A.
, 2002, “
Two-Dimensional Cascades and Mixing: A Physical Space Approach
,”
J. Fluid Mech.
,
467
, pp.
81
100
. 0022-1120
46.
Babiano
,
A.
, and
Provenzale
,
A.
, 2007, “
Coherent Vortices and Tracer Cascades in Two-Dimensional Turbulence
,”
J. Fluid Mech.
,
574
, pp.
429
448
. 0022-1120
47.
Rivera
,
M. K.
,
Daniel
,
W. B.
,
Chen
,
S. Y.
, and
Ecke
,
R. E.
, 2003, “
Energy and Enstrophy Transfer in Decaying Two-Dimensional Turbulence
,”
Phys. Rev. Lett.
0031-9007,
90
, p.
104502
.
48.
Kraichnan
,
R. H.
, 1975, “
Statistical Dynamics of Two-Dimensional Flow
,”
J. Fluid Mech.
0022-1120,
67
, pp.
155
175
.
49.
Eyink
,
G. L.
, 2006, “
Multi-Scale Gradient Expansion of the Turbulent Stress Tensor
,”
J. Fluid Mech.
0022-1120,
549
, pp.
159
190
.
50.
Eyink
,
G. L.
, 2006, “
A Turbulent Constitutive Law for the Two-Dimensional Inverse Energy Cascade
,”
J. Fluid Mech.
0022-1120,
549
, pp.
191
214
.
51.
Kraichnan
,
R. H.
, 1976, “
Eddy Viscosity in Two and Three Dimensions
,”
J. Atmos. Sci.
0022-4928,
33
, pp.
1521
1536
.
52.
Lilly
,
D. K.
, 1971, “
Numerical Simulation of Developing and Decaying Two-Dimensional Turbulence
,”
J. Fluid Mech.
0022-1120,
45
, pp.
395
415
.
53.
For bounded domains with no-slip walls, additional boundary contributions should be added to the right hand side of Eq. 14. In particular, the condition Ω(t)≤Ω(t=0) for flows in domains with no-slip boundaries is invalidated, as we will see later on in this review. Note that the equation describing the rate of change of kinetic energy remains unaffected by the presence of walls. However, the relation for dΩ/dt will change.
54.
Fornberg
,
B.
, 1977, “
Numerical Study of 2-D Turbulence
,”
J. Comput. Phys.
0021-9991,
25
, pp.
1
31
.
55.
Matthaeus
,
W. H.
, and
Montgomery
,
D.
, 1980, “
Selective Decay Hypothesis at High Mechanical and Magnetic Reynolds Numbers
,”
Ann. N.Y. Acad. Sci.
0077-8923,
357
, pp.
203
222
.
56.
Basdevant
,
C.
,
Legras
,
B.
, and
Sadourny
,
R.
, 1981, “
A Study of Barotropic Model Flows: Intermittency, Waves and Predictability
,”
J. Atmos. Sci.
0022-4928,
38
, pp.
2305
2326
.
57.
McWilliams
,
J. C.
, 1984, “
The Emergence of Isolated Coherent Vortices in Turbulent Flow
,”
J. Fluid Mech.
0022-1120,
146
, pp.
21
43
.
58.
Santangelo
,
P.
,
Benzi
,
R.
, and
Legras
,
B.
, 1989, “
The Generation of Vortices in High-Resolution, Two-Dimensional Decaying Turbulence and the Influence of Initial Conditions on the Breaking of Self-Similarity
,”
Phys. Fluids A
0899-8213,
1
, pp.
1027
1034
.
59.
Kida
,
S.
, 1985, “
Numerical Simulation of Two-Dimensional Turbulence With High Symmetry
,”
J. Phys. Soc. Jpn.
0031-9015,
54
, pp.
2840
2854
.
60.
Brachet
,
M. E.
,
Meneguzzi
,
M.
, and
Sulem
,
P. -L.
, 1986, “
Small-Scale Dynamics of High-Reynolds Number Two-Dimensional Turbulence
,”
Phys. Rev. Lett.
0031-9007,
57
, pp.
683
686
.
61.
Brachet
,
M. E.
,
Meneguzzi
,
M.
,
Politano
,
H.
, and
Sulem
,
P. -L.
, 1988, “
The Dynamics of Freely Decaying Two-Dimensional Turbulence
,”
J. Fluid Mech.
0022-1120,
194
, pp.
333
349
.
62.
Benzi
,
R.
,
Patarnello
,
S.
, and
Santangelo
,
P.
, 1987, “
On the Statistical Properties of Two-Dimensional Decaying Turbulence
,”
Europhys. Lett.
0295-5075,
3
, pp.
811
818
.
63.
Benzi
,
R.
,
Patarnello
,
S.
, and
Santangelo
,
P.
, 1988, “
Self-Similar Coherent Structures in Two-Dimensional Decaying Turbulence
,”
J. Phys. A
0305-4470,
21
, pp.
1221
1237
.
64.
McWilliams
,
J. C.
, 1990, “
A Demonstration of the Suppression of Turbulent Cascades by Coherent Vortices in Two-Dimensional Turbulence
,”
Phys. Fluids A
0899-8213,
2
, pp.
547
552
.
65.
Tran
,
C. V.
, and
Dritschel
,
D. G.
, 2006, “
Vanishing Enstrophy Dissipation in Two-Dimensional Navier–Stokes Turbulence in the Inviscid Limit
,”
J. Fluid Mech.
0022-1120,
559
, pp.
107
116
.
66.
Leith
,
C. E.
, 1984, “
Minimum Enstrophy Vortices
,”
Phys. Fluids
0031-9171,
27
, pp.
1388
1395
.
67.
Carnevale
,
G. F.
,
McWilliams
,
J. C.
,
Pomeau
,
Y.
,
Weiss
,
J. B.
, and
Young
,
W. R.
, 1991, “
Evolution of Vortex Statistics in Two-Dimensional Turbulence
,”
Phys. Rev. Lett.
0031-9007,
66
, pp.
2735
2737
.
68.
Carnevale
,
G. F.
,
McWilliams
,
J. C.
,
Pomeau
,
Y.
,
Weiss
,
J. B.
, and
Young
,
W. R.
, 1992, “
Rates, Pathways, and End States of Nonlinear Evolution in Decaying Two-Dimensional Turbulence: Scaling Theory Versus Selective Decay
,”
Phys. Fluids A
0899-8213,
4
, pp.
1314
1316
.
69.
Weiss
,
J. B.
, and
McWilliams
,
J. C.
, 1993, “
Temporal Scaling Behavior of Decaying Two-Dimensional Turbulence
,”
Phys. Fluids A
0899-8213,
5
, pp.
608
621
.
70.
Cardoso
,
O.
,
Marteau
,
D.
, and
Tabeling
,
P.
, 1994, “
Quantitative Experimental Study of the Free Decay of Quasi-Two-Dimensional Turbulence
,”
Phys. Rev. E
1063-651X,
49
, pp.
454
461
.
71.
Hansen
,
A. E.
,
Marteau
,
D.
, and
Tabeling
,
P.
, 1998, “
Two-Dimensional Turbulence and Dispersion in a Freely Decaying System
,”
Phys. Rev. E
1063-651X,
58
, pp.
7261
7271
.
72.
Bracco
,
A.
,
McWilliams
,
J. C.
,
Murante
,
G.
,
Provenzale
,
A.
, and
Weiss
,
J. B.
, 2000, “
Revisiting Freely Decaying Two-Dimensional Turbulence at Millennial Resolution
,”
Phys. Fluids
1070-6631,
12
, pp.
2931
2941
.
73.
McWilliams
,
J. C.
, 1990, “
The Vortices of Two-Dimensional Turbulence
,”
J. Fluid Mech.
0022-1120,
219
, pp.
361
385
.
74.
Dritschel
,
D. G.
, 1993, “
Vortex Properties of Two-Dimensional Turbulence
,”
Phys. Fluids A
0899-8213,
5
, pp.
984
997
.
75.
Chasnov
,
J. R.
, 1997, “
On the Decay of Two-Dimensional Homogeneous Turbulence
,”
Phys. Fluids
1070-6631,
9
, pp.
171
180
.
76.
Dmitruk
,
P.
, and
Montgomery
,
D. C.
, 2005, “
Numerical Study of the Decay of Enstrophy in a Two-Dimensional Navier-Stokes Fluid in the Limit of Very Small Viscosities
,”
Phys. Fluids
1070-6631,
17
, p.
035114
.
77.
Bartello
,
P.
, and
Warn
,
T.
, 1996, “
Self-Similarity of Decaying Two-Dimensional Turbulence
,”
J. Fluid Mech.
0022-1120,
326
, pp.
357
372
.
78.
Clercx
,
H. J. H.
, and
Nielsen
,
A. H.
, 2000, “
Vortex Statistics for Turbulence in a Container With Rigid Boundaries
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
752
755
.
79.
Clercx
,
H. J. H.
,
Nielsen
,
A. H.
,
Torres
,
D. J.
, and
Coutsias
,
E. A.
, 2001, “
Two-Dimensional Turbulence in Square and Circular Domains With No-Slip Walls
,”
Eur. J. Mech. B/Fluids
0997-7546,
20
, pp.
557
576
.
80.
van Bokhoven
,
L. J. A.
,
Trieling
,
R. R.
,
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2007, “
Influence of Initial Conditions on Decaying Two-Dimensional Turbulence
,”
Phys. Fluids
1070-6631,
19
, p.
046601
.
81.
Matthaeus
,
W. H.
,
Stribling
,
W. T.
,
Martinez
,
D.
,
Oughton
,
S.
, and
Montgomery
,
D.
, 1991, “
Decaying, Two-Dimensional, Navier-Stokes Turbulence at Very Long Times
,”
Physica D
0167-2789,
51
, pp.
531
538
.
82.
Yin
,
Z.
,
Montgomery
,
D. C.
, and
Clercx
,
H. J. H.
, 2003, “
Alternative Statistical-Mechanical Descriptions of Decaying Two-Dimensional Turbulence in Terms of ‘Patches’ and ‘Points’
,”
Phys. Fluids
1070-6631,
15
, pp.
1937
1953
.
83.
Eyink
,
G. L.
, and
Sreenivasan
,
K. R.
, 2006, “
Onsager and the Theory of Hydrodynamic Turbulence
,”
Rev. Mod. Phys.
0034-6861,
78
, pp.
87
135
.
84.
Matthaeus
,
W. H.
,
Stribling
,
W. T.
,
Martinez
,
D.
,
Oughton
,
S.
, and
Montgomery
,
D.
, 1991, “
Selective Decay and Coherent Vortices in Two-Dimensional Incompressible Turbulence
,”
Phys. Rev. Lett.
0031-9007,
66
, pp.
2731
2734
.
85.
Montgomery
,
D.
,
Matthaeus
,
W. H.
,
Stribling
,
W. T.
,
Martinez
,
D.
, and
Oughton
,
S.
, 1992, “
Relaxation in Two Dimensions and the ‘Sinh-Poisson’ Equation
,”
Phys. Fluids A
0899-8213,
4
, pp.
3
6
.
86.
Joyce
,
G. R.
, and
Montgomery
,
D.
, 1973, “
Negative Temperature States for the Two-Dimensional Guiding Centre Plasma
,”
J. Plasma Phys.
,
10
, pp.
107
121
. 0022-3778
87.
Montgomery
,
D.
, and
Joyce
,
G. R.
, 1974, “
Statistical Mechanics of Negative Temperature States
,”
Phys. Fluids
0031-9171,
17
, pp.
1139
1145
.
88.
Pointin
,
Y. B.
, and
Lundgren
,
T. S.
, 1976, “
Statistical Mechanics of Two-Dimensional Vortices in a Bounded Domain
,”
Phys. Fluids
0031-9171,
19
, pp.
1459
1470
.
89.
Ting
,
A. C.
,
Chen
,
H. H.
, and
Lee
,
Y. C.
, 1987, “
Exact Solution of a Nonlinear Boundary Value Problem: The Vortices of the Two-Dimensional Sinh-Poisson Equation
,”
Physica D
0167-2789,
26
, pp.
37
66
.
90.
Miller
,
J.
, 1990, “
Statistical Mechanics of Euler’s Equation in Two Dimensions
,”
Phys. Rev. Lett.
0031-9007,
65
, pp.
2137
2140
.
91.
Miller
,
J.
,
Weichman
,
P. B.
, and
Cross
,
M. C.
, 1992, “
Statistical Mechanics, Euler’s Equation, and Jupiter’s Red Spot
,”
Phys. Rev. A
1050-2947,
45
, pp.
2328
2359
.
92.
Robert
,
R.
, and
Sommeria
,
J.
, 1991, “
Statistical Equilibrium States for Two-Dimensional Flow
,”
J. Fluid Mech.
0022-1120,
229
, pp.
291
310
.
93.
Chavanis
,
P. H.
, and
Sommeria
,
J.
, 1996, “
Classification of Self-Organized Structures in Two-Dimensional Turbulence: The Case of a Bounded Domain
,”
J. Fluid Mech.
0022-1120,
314
, pp.
267
297
.
94.
Danilov
,
S.
,
Dolzhanskii
,
F. V.
,
Dovzhenko
,
V. A.
, and
Krymov
,
V. A.
, 2002, “
Experiments on Free Decay of Quasi-Two-Dimensional Turbulent Flows
,”
Phys. Rev. E
1063-651X,
65
, p.
036316
.
95.
Clercx
,
H. J. H.
,
van Heijst
,
G. J. F.
, and
Zoeteweij
,
M. L.
, 2003, “
Quasi-Two-Dimensional Turbulence in Shallow Fluid Layers: The Role of Bottom Friction and Fluid Layer Depth
,”
Phys. Rev. E
1063-651X,
67
, p.
066303
.
96.
Wells
,
J.
, and
Afanasyev
,
Ya. D.
, 2004, “
Decaying Quasi-Two-Dimensional Turbulence in a Rectangular Container: Laboratory Experiments
,”
Geophys. Astrophys. Fluid Dyn.
0309-1929,
98
, pp.
1
20
.
97.
Rivera
,
M. K.
, and
Ecke
,
R. E.
, 2005, “
Pair Dispersion and Doubling Time Statistics in Two-Dimensional Turbulence
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
194503
.
98.
Boffetta
,
G.
,
Cenedese
,
A.
,
Espa
,
S.
, and
Musacchio
,
S.
, 2005, “
Effects of Friction on 2D Turbulence: An Experimental Study of the Direct Cascade
,”
Europhys. Lett.
0295-5075,
71
, pp.
590
596
.
99.
Shats
,
M. G.
,
Xia
,
H.
, and
Punzmann
,
H.
, 2005, “
Spectral Condensation of Turbulence in Plasma and Fluids and Its Role in Low-to-High Phase Transitions in Toroidal Plasmas
,”
Phys. Rev. E
1063-651X,
71
, p.
046409
.
100.
Akkermans
,
R. A. D.
,
Kamp
,
L. P. J.
,
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2008, “
Intrinsic Three-Dimensionality in Electromagnetically Driven Shallow Flows
,”
EPL
0295-5075,
83
, p.
24001
.
101.
Akkermans
,
R. A. D.
,
Cieslik
,
A. R.
,
Kamp
,
L. P. J.
,
Trieling
,
R. R.
,
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2008, “
The Three-Dimensional Structure of an Electromagnetically Generated Dipolar Vortex in a Shallow Fluid Layer
,”
Phys. Fluids
1070-6631,
20
, p.
116601
.
102.
Sommeria
,
J.
, 1986, “
Experimental Study of the Two-Dimensional Inverse Energy Cascade in a Square Box
,”
J. Fluid Mech.
0022-1120,
170
, pp.
139
168
.
103.
We adopt for this and other experiments a Cartesian coordinate frame, with the x- and y-axis spanning a plane parallel to the bottom of the tank, and the z-axis is taken vertically upward.
104.
Verron
,
J.
, and
Sommeria
,
J.
, 1987, “
Numerical Simulation of a Two-Dimensional Turbulence Experiment in Magnetohydrodynamics
,”
Phys. Fluids
0031-9171,
30
, pp.
732
739
.
105.
Molenaar
,
D.
,
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2004, “
Angular Momentum of Forced 2D Turbulence in a Square No-Slip Domain
,”
Physica D
0167-2789,
196
, pp.
329
340
.
106.
Tabeling
,
P.
,
Burkhart
,
S.
,
Cardoso
,
O.
, and
Willaime
,
H.
, 1991, “
Experimental Study of Freely Decaying Two-Dimensional Turbulence
,”
Phys. Rev. Lett.
0031-9007,
67
, pp.
3772
3775
.
107.
Dolzhanskii
,
F. V.
,
Krymov
,
V. A.
, and
Manin
,
D. Yu.
, 1992, “
An Advanced Experimental Investigation of Quasi-Two-Dimensional Shear Flows
,”
J. Fluid Mech.
0022-1120,
241
, pp.
705
722
.
108.
Jüttner
,
B.
,
Marteau
,
D.
,
Tabeling
,
P.
, and
Thess
,
A.
, 1997, “
Numerical Simulations of Experiments on Quasi-Two-Dimensional Turbulence
,”
Phys. Rev. E
1063-651X,
55
, pp.
5479
5488
.
109.
Marteau
,
D.
,
Cardoso
,
O.
, and
Tabeling
,
P.
, 1995, “
Equilibrium States of Two-Dimensional Turbulence: An Experimental Study
,”
Phys. Rev. E
1063-651X,
51
, pp.
5124
5127
.
110.
Paret
,
J.
,
Marteau
,
D.
,
Paireau
,
O.
, and
Tabeling
,
P.
, 1997, “
Are Flows Electromagnetically Forced in Thin Stratified Layers Two-Dimensional?
Phys. Fluids
1070-6631,
9
, pp.
3102
3104
.
111.
Clercx
,
H. J. H.
,
Maassen
,
S. R.
, and
van Heijst
,
G. J. F.
, 1999, “
Decaying Two-Dimensional Turbulence in Square Containers With No-Slip or Stress-Free Boundaries
,”
Phys. Fluids
1070-6631,
11
, pp.
611
626
.
112.
Satijn
,
M. P.
,
Cense
,
A. W.
,
Verzicco
,
R.
,
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2001, “
Three-Dimensional Structure and Decay Properties of Vortices in Shallow Fluid Layers
,”
Phys. Fluids
1070-6631,
13
, pp.
1932
1945
.
113.
Note that limλ→0t∗=t and t∗≈t if t≲Reλ.
114.
It is found more appropriate to use the typical eddy turnover time of the initial vortices in the discussion of the numerical results. For the simulations discussed in this section, τ≈4t.
115.
Paret
,
J.
, and
Tabeling
,
P.
, 1997, “
Experimental Observation of the Two-Dimensional Inverse Energy Cascade
,”
Phys. Rev. Lett.
0031-9007,
79
, pp.
4162
4165
.
116.
Paret
,
J.
, and
Tabeling
,
P.
, 1998, “
Intermittency in the Two-Dimensional Inverse Cascade of Energy: Experimental Observations
,”
Phys. Fluids
1070-6631,
10
, pp.
3126
3136
.
117.
The notation, although commonly used, might be somewhat confusing. Strictly spoken it is the statistical average that depends solely on r=|r| and not on x; thus ⟨|δu∥(x,r)|n⟩=f(r).
118.
Dubos
,
T.
,
Babiano
,
A.
,
Paret
,
J.
, and
Tabeling
,
P.
, 2001, “
Intermittency and Coherent Structures in the Two-Dimensional Inverse Energy Cascade: Comparing Numerical and Laboratory Experiments
,”
Phys. Rev. E
1063-651X,
64
, p.
036302
.
119.
Paret
,
J.
,
Jullien
,
M. -C.
, and
Tabeling
,
P.
, 1999, “
Vorticity Statistics in the Two-Dimensional Enstrophy Cascade
,”
Phys. Rev. Lett.
0031-9007,
83
, pp.
3418
3421
.
120.
Falkovich
,
G.
, and
Lebedev
,
V.
, 1994, “
Universal Direct Cascade in Two-Dimensional Turbulence
,”
Phys. Rev. E
1063-651X,
50
, pp.
3883
3899
.
121.
Eyink
,
G. L.
, 1995, “
Exact Results on Scaling Exponents in the 2D Enstrophy Cascade
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
3800
3803
.
122.
Nam
,
K.
,
Ott
,
E.
,
Antonsen
,
T. M.
, Jr.
, and
Guzdar
,
P. N.
, 2000, “
Lagrangian Chaos and the Effect of Drag on the Enstrophy Cascade in Two-Dimensional Turbulence
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
5134
5137
.
123.
Boffetta
,
G.
,
Celani
,
A.
,
Musacchio
,
S.
, and
Vergassola
,
M.
, 2002, “
Intermittency in Two-Dimensional Ekman-Navier-Stokes Turbulence
,”
Phys. Rev. E
1063-651X,
66
, p.
026304
.
124.
Wells
,
M. G.
,
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2007, “
Vortices in Oscillating Spin-Up
,”
J. Fluid Mech.
0022-1120,
573
, pp.
339
369
.
125.
van Heijst
,
G. J. F.
,
Clercx
,
H. J. H.
, and
Molenaar
,
D.
, 2006, “
The Effects of Solid Boundaries on Confined Two-Dimensional Turbulence
,”
J. Fluid Mech.
0022-1120,
554
, pp.
411
431
.
126.
Maassen
,
S. R.
,
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2002, “
Self-Organization of Quasi-2D Turbulence in Stratified Fluids in Square and Circular Containers
,”
Phys. Fluids
1070-6631,
14
, pp.
2150
2169
.
127.
Clercx
,
H. J. H.
,
Maassen
,
S. R.
, and
van Heijst
,
G. J. F.
, 1998, “
Spontaneous Spin-Up During the Decay of 2D Turbulence in a Square Container With Rigid Boundaries
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
5129
5132
.
128.
Maassen
,
S. R.
,
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2003, “
Self-Organization of Decaying Quasi-2D Turbulence in Stratified Fluids in Rectangular Containers
,”
J. Fluid Mech.
0022-1120,
495
, pp.
19
33
.
129.
Li
,
S.
, and
Montgomery
,
D.
, 1996, “
Decaying Two-Dimensional Turbulence With Rigid Walls
,”
Phys. Lett. A
0375-9601,
218
, pp.
281
291
.
130.
Li
,
S.
,
Montgomery
,
D.
, and
Jones
,
W. B.
, 1996, “
Inverse Cascades of Angular Momentum
,”
J. Plasma Phys.
,
56
, pp.
615
639
. 0022-3778
131.
Li
,
S.
,
Montgomery
,
D.
, and
Jones
,
W. B.
, 1997, “
Two-Dimensional Turbulence With Rigid Circular Walls
,”
Theor. Comput. Fluid Dyn.
0935-4964,
9
, pp.
167
181
.
132.
Equivalence of both terms can also be shown by expressing the pressure boundary condition for the present problem in terms of the normal vorticity gradient at the no-slip boundary.
133.
Clercx
,
H. J. H.
, 1997, “
A Spectral Solver for the Navier-Stokes Equations in the Velocity-Vorticity Formulation for Flows With Two Non-Periodic Directions
,”
J. Comput. Phys.
0021-9991,
137
, pp.
186
211
.
134.
Daube
,
O.
, 1992, “
Resolution of the 2D Navier-Stokes Equations in Velocity-Vorticity Form by Means of an Influence Matrix Technique
,”
J. Comput. Phys.
0021-9991,
103
, pp.
402
414
.
135.
Clercx
,
H. J. H.
, and
Bruneau
,
C. -H.
, 2006, “
The Normal and Oblique Collision of a Dipole With a No-Slip Boundary
,”
Comput. Fluids
0045-7930,
35
, pp.
245
279
.
136.
Orszag
,
S. A.
, 1969, “
Numerical Methods for the Simulation of Turbulence
,”
Phys. Fluids
0031-9171,
12
, pp.
II
-250–II-
257
.
137.
Kress
,
B. T.
, and
Montgomery
,
D. C.
, 2000, “
Pressure Determinations for Incompressible Fluids and Magnetofluids
,”
J. Plasma Phys.
,
64
, pp.
371
377
. 0022-3778
138.
Maassen
,
S. R.
,
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 1999, “
Decaying Quasi-2D Turbulence in a Stratified Fluid With Circular Boundaries
,”
Europhys. Lett.
0295-5075,
46
, pp.
339
345
.
139.
Yap
,
C. T.
, and
van Atta
,
C. W.
, 1993, “
Experimental Studies of the Development of Quasi-Two-Dimensional Turbulence in Stably Stratified Fluid
,”
Dyn. Atmos. Oceans
0377-0265,
19
, pp.
289
323
.
140.
Fincham
,
A. M.
,
Maxworthy
,
T.
, and
Spedding
,
G. R.
, 1996, “
Energy Dissipation and Vortex Structure in Freely Decaying Stratified Grid Turbulence
,”
Dyn. Atmos. Oceans
0377-0265,
23
, pp.
155
169
.
141.
Schneider
,
K.
, and
Farge
,
M.
, 2005, “
Decaying Two-Dimensional Turbulence in a Circular Container
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
244502
.
142.
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2002, “
Dissipation of Kinetic Energy in Two-Dimensional Bounded Flows
,”
Phys. Rev. E
1063-651X,
65
, p.
066305
.
143.
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2000, “
Energy Spectra for Decaying 2D Turbulence in a Bounded Domain
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
306
309
.
144.
Angot
,
P.
,
Bruneau
,
C. -H.
, and
Fabrie
,
P.
, 1999, “
A Penalization Method to Take Into Account Obstacles in Viscous Flows
,”
Numer. Math.
0029-599X,
81
, pp.
497
520
.
145.
Arquis
,
E.
, and
Caltagirone
,
J. P.
, 1984, “
Sur les conditions hydrodynamique au voisinage d’une interface milieu fluide-milieu poreux: Application à la convection naturelle
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
0764-4450,
299
, pp.
1
4
.
146.
Keetels
,
G. H.
,
D’Ortona
,
U.
,
Kramer
,
W.
,
Clercx
,
H. J. H.
,
Schneider
,
K.
, and
van Heijst
,
G. J. F.
, 2007, “
Fourier Spectral and Wavelet Solvers for the Incompressible Navier–Stokes Equations With Volume-Penalization: Convergence of a Dipole-Wall Collision
,”
J. Comput. Phys.
0021-9991,
227
, pp.
919
945
.
147.
Keetels
,
G. H.
,
Clercx
,
H. J. H.
, and
van Heijst
,
G. J. F.
, 2009, “
The Origin of Spin-Up Processes in Decaying Two-Dimensional Turbulence
,”
Eur. J. Mech. B/Fluids
0997-7546, submitted.
You do not currently have access to this content.