Abstract

The significant advances in nonlinear stochastic dynamics and control in Hamiltonian formulation during the past decade are reviewed. The exact stationary solutions and equivalent nonlinear system method of Gaussian-white -noises excited and dissipated Hamiltonian systems, the stochastic averaging method for quasi Hamiltonian systems, the stochastic stability, stochastic bifurcation, first-passage time and nonlinear stochastic optimal control of quasi Hamiltonian systems are summarized. Possible extension and applications of the theory are pointed out. This review article cites 158 references.

References

1.
Bolotin
,
V. V.
, 1984,
Random Vibration of Elastic Systems
,
Matinus Nijhoff Publishers
,
The Hague
.
2.
Ibrahim
,
R. A.
, 1985,
Parametric Random Vibration
,
Research Studies Press LTD
,
Taunton, England
.
3.
Dimentberg
,
M. F.
, 1988,
Statistical Dynamics of Nonlinear and Time-Varying Systems
,
Research Studies Press LtD
,
Taunton, England
.
4.
Roberts
,
J. B.
, and
Spanos
,
P. D.
, 1990,
Random Vibration and Stctistical Linearization
,
Wiley
,
New York
.
5.
Zhu
,
W. Q.
, 1992,
Random Vibration
,
Science Press
,
Beijing (In Chinese)
.
6.
Soong
,
T. T.
, and
Grigoriu
,
M.
, 1993,
Random Vibration of Mechanical and Structural Systems
,
PTR Prentice-Hall
,
Englewood Cliffs, New Jersey
.
7.
Soize
,
C.
, 1994,
The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solution
,
World Scientific
,
Singapore
.
8.
Lin
,
Y. K.
, and
Cai
,
G. Q.
, 1995,
Probabilistic Structural Dynamics, Advanced Theory and Applications
,
McGraw-Hill
,
New York
.
9.
Grigoriu
,
M.
, 1995,
Applied Non-Gaussian Processes; Examples, Theory, Simulations, Linear Random Vibration and MATLAB Solutions
,
Prentice Hall
,
Englewood Cliffs, NJ, USA
.
10.
Khasminskii
,
R. Z.
, 1980,
Stochastic Stability of Differential Equations
,
Sijthoff and Noorchoff, Alphen aan den Rijn
,
The Netherlands
.
11.
Mao
,
X.
, 1994,
Exponential Stability of Stochastic Differential Equations
,
Marcel Dekker Inc.
,
New York
.
12.
Arnold
,
L.
, 1998,
Random Dynamical Systems
,
Springer
,
Berlin
.
13.
Stengel
,
H.
, 1986,
Stochastic Optimal Control
,
Wiley
,
New York
.
14.
Fleming
,
W. H.
, and
Soner
,
H. M.
, 1992,
Controlled Markov Processes and Viscosity Solutions
,
Springer-Verlag
,
New York
.
15.
Yong
,
J. M.
, and
Zhou
,
X. Y.
, 1999,
Stochastic Control, Hamiltonian Systems and HJB Equations
,
Springer-Verlag
,
New York
.
16.
Ziegler
,
F.
, and
Sehuëller
,
G. I.
, eds, 1988,
Nonlinear Stochastic Dynamic Engineering Systems
,
Proc. IUTAM Symp.
,
Springer-Verlag
,
Berlin
.
17.
Bellomo
,
N.
, and
Casciati
,
F.
, eds, 1992,
Nonlinear Stochastic Mechanics
,
Proc. IUTAM Symp.
,
Springer-Verlag
,
Berlin
.
18.
Naess
,
A.
, and
Krenk
,
S.
, eds, 1996,
Advances in Nonlinear Stochastic Mechanics
,
Proc. IUTAM Symp.
,
Kluwer Academic Publishers
,
Dordrecht
.
19.
Narayanan
,
S.
, and
Iyengar
,
R. N.
, eds, 2001,
Nonlinearity and Stochastic Structural Dynamics
,
Proc. IUTAM Symp.
,
Kluwer Academic Publishers
,
Dordrecht
.
20.
Sri Namachchivaya
,
N.
, and
Lin
,
Y. K.
, eds, 2003,
Nonlinear Stochastic Dynamics
,
Proc. IUTAM Symp.
,
Kluwer Academic Publishers
,
Dordrecht
.
21.
Crandall
,
S. H.
, and
Zhu
,
W. Q.
, 1983, “
Random Vibration: A Survey of Recent Developments
,”
ASME J. Appl. Mech.
0021-8936,
50
, 50th Anniversary Issue, pp.
953
962
.
22.
Sehuëller
,
G. I.
, ed, 1997, “
A State-of-the-Art Report on Computational Stochastic Mechanics
,”
Probab. Eng. Mech.
0266-8920,
12
, pp.
197
321
.
23.
Zhu
,
W. Q.
, and
Cai
,
G. Q.
, 2002, “
Nonlinear Stochastic Dynamics: A Survey of Recent Developments
,”
Acta Mech.
0001-5970,
18
, pp.
551
566
.
24.
Zhu
,
W. Q.
, 2003,
Nonlinear Stochastic Dynamics and Control—Hamiltonian Theoretical Framework
,
Science Press
,
Beijing
(In Chinese).
25.
Tabor
,
M.
, 1989,
Chaos and Integrability in Nonlinear Dynamics, An Introduction
,
Wiley
,
New York
.
26.
Lichtenberg
,
A. J.
, and
Lieberman
,
M. A.
, 1983,
Regular and Stochastic Motion
,
Springer-Verlag
,
Berlin
.
27.
Das
,
A.
, 1989,
Integrable Models
,
World Scientific
,
Singapore
.
28.
Yoshida
,
H.
, 1999, “
A New Necessary Condition for the Integrability of Hamiltonian Systems With Two-Dimensional Homogeneous Potential
,”
Physica D
0167-2789,
128
, pp.
53
87
.
29.
Arnold
,
V. I.
, 1989,
Mathmatical Methods of Classical Mechanics
, 2nd ed.,
Springer-Verlag
,
New York
.
30.
Arnold
,
V. I.
,
Kozlov
,
V. V.
, and
Neishtadt
,
A. I.
, 1988,
Mathematical Aspects of Classical and Celestial Mechanics, In Dynamical Systems III
,
Viarnold
, ed,
Springer-Verlag
,
New York
.
31.
Boundtis
,
T.
,
Segar
,
H.
, and
Vivaldi
,
F.
, 1982, “
Integrable Hamiltonian Systems and the Painleve Property
,
Phys. Rev. A
1050-2947, Third Series,
25
, pp.
1257
1264
.
32.
Whittaker
,
E. T.
, 1964,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
,
Cambridge University Press
,
Cambridge, UK
.
33.
Hénon
,
M.
, and
Heiles
,
C.
, 1964, “
The Applicability of the Third Integral of Motion; Some Numerical Experiments
,”
Astron. J.
0004-6256,
69
, pp.
73
79
.
34.
Fuller
,
A. T.
, 1969, “
Analysis of Nonlinear Stochastic Systems by Means of the Fokker-Planck Equation
,”
Int. J. Control
0020-7179,
9
, pp.
603
655
.
35.
Zhu
,
W. Q.
,
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 1990, “
On Exact Stationary Solutions of Stochastically Perturbed Hamiltonian Systems
,”
Probab. Eng. Mech.
0266-8920,
5
, pp.
84
87
.
36.
Zhu
,
W. Q.
,
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 1992, “
Stochastically Perturbed Hamiltonian Systems
,”
Nonlinear Stochastic Mechanics
,
N.
Bellomo
and
F.
Casciaki
, eds.,
Springer-Verlag
,
Berlin
, pp.
543
552
.
37.
Caughey
,
T. K.
, 1971, “
Nonlinear Theory of Random Vibration
,”
Advances in Applied Mechanics 11
,
Academic Press
,
New York
.
38.
Caughey
,
T. K.
, and
Ma
,
F.
, 1982, “
The Exact Steady-State Solution of a Class of Nonlinear Stochastic Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
17
, pp.
137
142
.
39.
Caughey
,
T. K.
, and
Ma
,
F.
, 1982, “
The Steady-State Response of a Class of Dynamical Systems to Stochastic Excitation
,”
ASME J. Appl. Mech.
0021-8936,
49
, pp.
629
632
.
40.
Dimentberg
,
M. F.
, 1982, “
An Exact Solution to a Certain Nonlinear Random Vibration Problem
,”
Int. J. Non-Linear Mech.
0020-7462,
17
, pp.
231
236
.
41.
Lin
,
Y. K.
, and
Cai
,
G. Q.
, 1988, “
Exact Stationary-Response Solution for Second Order Nonlinear Systems Under Parametric and External Excitations, Part II
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
702
705
.
42.
Zhu
,
W. Q.
, 1990, “
Exact Solutions for Stationary Responses of Several Classes of Nonlinear Systems Under Parametric and External White Noise Excitations
,”
J. Appl. Math. Mech.
0021-8928,
11
, pp.
165
175
.
43.
Zhu
,
W. Q.
, and
Yang
,
Y. Q.
, 1996, “
Exact Stationary Solutions of Stochastically Excited and Dissipated Integrable Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
493
500
.
44.
Huang
,
Z. L.
,
Liu
,
Z. H.
, and
Zhu
,
W. Q.
, 2004, “
Stationary Response of Multi-Degree-of-Freedom Vibro-Impact Systems Under White Noise Excitations
,”
J. Sound Vib.
0022-460X,
275
, pp.
223
240
.
45.
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 1996, “
Exact and Approximate Solutions for Randomly Excited MDOF Nonlinear Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
31
, pp.
623
647
.
46.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
, 2001, “
Exact Stationary Solutions of Stochastically Excited and Dissipated Partially Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
36
, pp.
39
48
.
47.
Ying
,
Z. G.
, and
Zhu
,
W. Q.
, 2000, “
Exact Stationary Solutions of Stochastically Excited and Dissipated Gyroscopic Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
35
, pp.
837
848
.
48.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
, 2000, “
Exact Stationary Solutions of Stochastically and Harmonically Excited and Dissipated Integrable Hamiltonian Systems
,”
J. Sound Vib.
0022-460X,
230
, pp.
709
720
.
49.
Caughey
,
T. K.
, 1986, “
On Response of Nonlinear Oscillators to Stochastic Excitation
,”
Probab. Eng. Mech.
0266-8920,
1
, pp.
2
4
.
50.
Lutes
,
L. D.
, 1970, “
Approximate Technique for Treating Random Vibration of Hysteretic Systems
,”
J. Acoust. Soc. Am.
0001-4966,
48
, pp.
299
306
.
51.
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 1988, “
A New Approximate Solution Technique for Randomly Excited Nonlinear Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
23
, pp.
409
420
.
52.
Zhu
,
W. Q.
, and
Yu
,
J. S.
, 1989, “
The Equivalent Nonlinear System Method
,”
J. Sound Vib.
0022-460X,
129
, pp.
385
395
.
53.
To
,
C. W. S.
, and
Li
,
D. M.
, 1991, “
Equivalent Nonlinearization of Nonlinear Systems to Random Excitation
,”
Probab. Eng. Mech.
0266-8920,
6
, pp.
184
192
.
54.
Lei
,
Z.
, and
Qiu
,
C.
, 1996, “
A New Equivalent Nonlinearization Method for Random Vibration of Nonlinear Systems
,”
Mech. Res. Commun.
0093-6413,
23
, pp.
131
136
.
55.
Zhu
,
W. Q.
,
Soong
,
T. T.
, and
Lei
,
Y.
, 1994, “
Equivalent Nonlinear System Method for Stochastically Excited Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
61
, pp.
618
623
.
56.
Zhu
,
W. Q.
, and
Lei
,
Y.
, 1997, “
Equivalent Nonlinear System Method for Stochastically Excited and Dissipated Integrable Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
209
216
.
57.
Zhu
,
W. Q.
, and
Deng
,
M. L.
, 2004, “
Equivalent Nonlinear Systems Method for Stochastically Excited and Dissipated Integrable Hamiltonian Systems-Resonant Case
,”
J. Sound Vib.
0022-460X,
274
, pp.
1110
1122
.
58.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Suzuki
,
Y.
, 2001, “
Equivalent Nonlinear System Method for Stochastically Excited and Dissipated Partially Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
36
, pp.
773
786
.
59.
Stratonovich
,
R. L.
, 1963, 1967,
Topics in the Theory of Random Noise
, Vols.
1
and
2
,
Gordon Breach
,
New York
.
60.
Khasminskii
,
R. Z.
, 1966, “
A Limit Theorem for Solution of Differential Equations With Random Right-Hand Side
,”
Theor. Probab. Appl.
0040-585X,
11
, pp.
390
406
.
61.
Papanicolaou
,
G. C.
, and
Kohler
,
W.
, 1974, “
Asymptotic Theory of Mixing Stochastic Ordinary Differential Equations
,”
Commun. Pure Appl. Math.
0010-3640,
27
, pp.
641
668
.
62.
Blankenship
,
G. L.
, and
Papanicolaou
,
G. C.
, 1978, “
Stability and Control of Stochastic Systems With Wide-Band Noise Disturbances I
,”
SIAM J. Appl. Math.
0036-1399,
34
, pp.
437
476
.
63.
Landa
,
P. S.
, and
Stratonovich
,
R. L.
, 1962, “
Theory of Stochastic Transition of Various Systems Between States
,”
Vestn. Mosk. Univ., Ser. 3: Fiz., Astron.
, pp.
33
45
(in Russian).
64.
Khasminskii
,
R. Z.
, 1964, “
Behavior of a Conservative System With Small Friction and Small Random Noise
,”
Prikl. Mat. Mekh.
0032-8235,
28
, pp.
1126
1130
(in Russian).
65.
Khasminskii
,
R. Z.
, 1968, “
On the Averaging Principle for Itô Stochastic Differential Equations
,”
Kybernetika
0023-5954,
3
, pp.
260
279
(in Russian).
66.
Papanicolaou
,
G.
,
Stroock
,
D.
, and
Varadhan
,
S. R. S.
, 1977, “
Martingale Approach to Some Limit Theorems
,”
Duke Univ. Math. Ser. III
.
67.
Roberts
,
J. B.
, 1982, “
Energy Method for Nonlinear Systems With Nonwhite Excitation
,” Random Vibrations and Reliabiity,
Proc. IUTAM Symp.
,
K.
Hennig
, ed.,
Academic-Verlag
,
Berlin
, pp.
285
294
.
68.
Red-Horse
,
J. R.
, and
Spanos
,
P. D.
, 1992, “
A Generalization to Stochastic Averaging in Random Vibration
,”
Int. J. Non-Linear Mech.
0020-7462,
27
, pp.
85
101
.
69.
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 2001, “
Random Vibration of Strongly Nonlinear Systems
,”
Nonlinear Dyn.
0924-090X,
24
, pp.
3
15
.
70.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Suzuke
,
Y.
, 2001, “
Response and Stability of Strongly Nonlinear Oscillators Under Wide-Band Random Excitation
,”
Int. J. Non-Linear Mech.
0020-7462,
36
, pp.
1235
1250
.
71.
Huang
,
Z. G. L.
, and
Zhu
,
W. Q.
, 2000, “
Stochastic Averaging of Strongly Nonlinear Oscillators Under Combined Harmonic and White Noise Excitations
,”
J. Sound Vib.
0022-460X,
238
, pp.
233
256
.
72.
Huang
,
Z. L.
,
Zhu
,
W. Q.
,
Ni
,
Y. Q.
, and
Ko
,
J. M.
, 2002, “
Stochastic Averaging of Strongly Nonlinear Oscillator Under Bounded Noise Excitation
,
J. Sound Vib.
0022-460X,
254
, pp.
245
267
.
73.
Sri Namachchivaya
,
N.
, and
Sowers
,
R. B.
, 2002, “
Rigorous Stochastic Averaging at a Center With Additive Noise
,”
Meccanica
0025-6455,
37
, pp.
85
114
.
74.
Freidlin
,
M. I.
, and
Wentzell
,
A. D.
, 1998,
Random Perturbation of Dynamical Systems
, 2nd ed,
Springer-Verlag
,
Berlin
.
75.
Sowers
,
R. B.
, 2004, “
Stochastic Averaging Near Homoclinic Robets Via Singular Perturbations
,” in Ref. (20).
76.
Roberts
,
J. B.
, and
Spanos
,
P. D.
, 1986, “
Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Int. J. Non-Linear Mech.
0020-7462,
21
, pp.
111
134
.
77.
Zhu
,
W. Q.
, 1988, “
Stochastic Averaging Methods in Random Vibration
,”
Appl. Mech. Rev.
0003-6900,
41
(
5
), pp.
189
199
.
78.
Zhu
,
W. Q.
, 1996, “
Recent Developments and Applications of the Stochastic Averaging Method in Random Vibration
,”
Appl. Mech. Rev.
0003-6900,
49
(
10
), pp.
s72
s82
.
79.
Zhu
,
W. Q.
, and
Yang
,
Y. Q.
, 1997, “
Stochastic Averaging of Quasi-Nonintegrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
157
164
.
80.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Yang
,
Y. Q.
, 1997, “
Stochastic Averaging of Quasi Integrable Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
975
984
.
81.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Suzuki
,
Y.
, 2002, “
Stochastic Averaging and Lyapunov Exponent of Quasi Partially Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
419
437
.
82.
Deng
,
M. L.
, and
Zhu
,
W. Q.
, 2003, “
Stationary Motion of Active Brownian Particle
,”
Phys. Rev. E
1063-651X,
69
, p.
046105
.
83.
Zhu
,
W. Q.
,
Deng
,
M. L.
, and
Huang
,
Z. L.
, 2003, “
Optimal Bounded Control of First-Passage Failure of Quasi Integrable Hamiltonian Systems With Wide-Band Random Excitation
,”
Nonlinear Dyn.
0924-090X,
33
, pp.
189
207
.
84.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
, 1997, “
Exact Stationary Solutions of Averaged Equations of Stochastically and Harmonically Excited MDOF Quasi-Linear Systems With Internal and / Or External Resonance
,”
J. Sound Vib.
0022-460X,
204
, pp.
249
258
.
85.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
, 2004, “
Stochastic Averaging of Quasi Integrable Hamiltonian Systems Under Combined Harmonic and White Noise Excitations
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
1421
1434
.
86.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
, 2004, “
Stochastic Averaging of Quasi Integrable Hamiltonian Systems Under Bounded Noise Excitation
,”
Probab. Eng. Mech.
0266-8920,
19
, pp.
219
228
.
87.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
, 2005, “
Averaging Method for Quasi-Integrable Hamiltonian Systems
,”
J. Sound Vib.
0022-460X,
284
, pp.
325
341
.
88.
Kozin
,
F.
, 1969, “
A Survey of Stability of Stochastic Systems
,”
Automatica
0005-1098,
5
(
1
), pp.
95
112
.
89.
Naprestek
,
J.
1996, “
Stochastic Exponential and Asymptotic Stability of Simple Nonlinear Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
31
(
5
), pp.
693
705
.
90.
Oseledec
,
V. I.
, 1968, “
A Multiplicative Ergodic Theorem, Lyapunov Characteristic Numbers for Dynamical Systems
,”
Trans. Mosc. Math. Soc.
0077-1554,
19
, pp.
197
231
.
91.
Khasminskii
,
R. Z.
, 1967, “
Necessary and Sufficient Conditions for the Asymptotic Stability of Linear Stochastic Systems
,”
Theor. Probab. Appl.
0040-585X,
11
, pp.
144
147
.
92.
Kozin
,
F.
, and
Zhang
,
Z. Y.
, 1991, “
On Almost Sure Sample Stability of Nonlinear Itô, Differential Equations
,”
Probab. Eng. Mech.
0266-8920,
6
(
2
), pp.
92
95
.
93.
Talay
,
D.
, 1999, “
Lyapunov Exponent of the Euler Scheme for Stochastic Differential Equation
,” in
Stochastic Dynamics
,
H.
Crauel
and
M.
Gundlach
, eds.,
Springer-Verlag
,
New York
, pp.
241
258
.
94.
Wihstutz
,
V.
, 1999, “
Perturbation Methods for Lyapunov Exponents
,” in
Stochastic Dynamics
,
H.
Crauel
and
M.
Gundlach
, eds.,
Springer-Verlag
,
New York
, pp.
209
239
.
95.
Ariaratnam
,
S. T.
, and
Xie
,
W.-C.
, 1992, “
Lyapunov Exponents and Stochastic Stability of Coupled Linear Systems Under Real Noise Excitation
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
664
673
.
96.
Ariaratnam
,
S. T.
, and
Abdelrahman
,
N. M.
, 2003, “
Stochastic Stability of Coupled Oscillators in Internal Resonance
,” in Ref. (20).
97.
Arnold
,
L.
, 1984, “
A Formula Connecting Sample and Moment Stability of Linear Stochastic Systems
.” in
Lyapunov Exponents (Lecture Notes in Mathematics 1186)
,
L.
Arnold
and
V.
Wihstutz
, eds.,
Springer-Verlag
,
Berlin
, pp.
793
802
.
98.
Arnold
,
L.
,
Doyle
,
M. M.
, and
Sri Namachchivaya
,
N.
, 1997, “
Small Noise Expansion of Moment Lyapunov Exponents for Two-Dimensional Systems
,”
Dyn. Stab. Syst.
0268-1110,
12
(
3
), pp.
187
211
.
99.
Khasminskii
,
R. Z.
, and
Moshchuk
,
N.
, 1998, “
Moment Lyapunov Exponent and Stability Index for Linear Conservative System With Small Random Perturbation
,”
SIAM J. Appl. Math.
0036-1399,
58
(
1
), pp.
245
256
.
100.
Xie
,
W. C.
, 2001, “
Moment Lyapunov Exponent of a Two-Dimensional System Under Real Noise Excitation
,”
J. Sound Vib.
0022-460X,
239
(
1
), pp.
139
155
.
101.
Horsthemke
,
W.
, and
Lefever
,
R.
, 1984,
Noise-Induced Transition
,
Springer-Verlag
,
Berlin
.
102.
Sri Namachchivaya
,
N.
, 1990, “
Stochastic Bifurcation
,”
Appl. Math. Comput.
0096-3003,
38
(
1
),
101
159
.
103.
Arnold
,
L.
, 2001, “
Recent Progress in Stochastic Bifurcation Theory
,” In Ref. (19), pp.
15
27
.
104.
Zhu
,
W. Q.
, 2004, “
Lyapunov Exponent and Stochastic Stability of Quasi Non-Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
645
655
.
105.
Pardoux
,
E.
, and
Wihstutz
,
V.
, 1988, “
Lyapunov Exponent and Rotation Number of Two-Dimensional Linear Stochastic Systems With Small Diffusion
,”
SIAM J. Appl. Math.
0036-1399,
48
, pp.
442
457
.
106.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
, 1999, “
Lyapunov Exponent and Stochastic Stability of Quasi Integrable Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
211
217
.
107.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
, 2000, “
Lyapunov Exponent and Almost Sure Asymptotic Stability of Quasi-Linear Gyroscopic Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
35
, pp.
645
655
.
108.
Huang
,
Z. L.
, and
Zhu
,
W. Q.
, 2003, “
A New Approach to Almost-Sure Asymptotic Stability of Stochastic Systems of Higher Dimension
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
239
247
.
109.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
, 1998, “
Stochastic Stability of Quasi-Non-Integrable-Hamiltonian Systems
,”
J. Sound Vib.
0022-460X,
218
, pp.
769
789
.
110.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
, 1999, “
Stochastic Hopf Bifurcation of Quasi Non-Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
34
, pp.
437
447
.
111.
Lyon
,
R. H.
,
Heckl
,
M.
, and
Hazelgrove
,
C. B.
, 1961, “
Response of Hard-Spring Oscillator to Narrow-Band Excitation
,”
J. Acoust. Soc. Am.
0001-4966,
33
, pp.
1404
1411
.
112.
Zhu
,
W. Q.
,
Lu
,
M. Q.
, and
Wu
,
Q. T.
, 1999, “
Stochastic Jump and Bifurcation of a Duffing Oscillator Under Narrow-Band Excitation
,”
J. Sound Vib.
0022-460X,
165
, pp.
285
304
.
113.
Kapitaniak
,
T.
, 1986, “
Chaotic Distribution of Nonlinear Systems Perturbed by Random Noise
,”
Phys. Lett. A
0375-9601,
116
, pp.
251
254
.
114.
Bulsara
,
A. R.
,
Schieve
,
W. C.
, and
Jacobs
,
E. W.
, 1990, “
Homoclinic Chaos in Systems Perturbed by Weak Langevin Noise
,”
Phys. Rev. A
1050-2947,
41
, pp.
668
681
.
115.
Frey
,
M.
, and
Simiu
,
E.
, 1993, “
Noise Induced Chaos and Phase Space Flux
,”
Physica D
0167-2789,
63
, pp.
321
340
.
116.
Liu
,
W. Y.
,
Zhu
,
W. Q.
, and
Huang
,
Z. L.
, 2001, “
Effect of Bounded Noise on Chaotic Motion of Duffing Oscillator Under Parametric Excitation
,”
Chaos, Solitons Fractals
0960-0779,
12
, pp.
527
537
.
117.
Liu
,
Z. H.
, and
Zhu
,
W. Q.
, 2004, “
Homoclinic Bifurcation and Chaos in Simple Pendulum Under Bounded Noise Excitation
,”
Chaos, Solitons Fractals
0960-0779,
20
, pp.
593
607
.
118.
Zhu
,
W. Q.
, and
Liu
,
Z. H.
, 2005, “
Homoclinic Bifurcation and Chaos in Coupled Simple Pendulum and Harmonic Oscillator Under Bounded Noise Excitation
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
15
(
1
), pp.
234
243
.
119.
Roberts
,
J. B.
, 1986, “
First-Passage Probabilities for Randomly Excited Systems: Diffusion Methods
,”
Probab. Eng. Mech.
0266-8920,
1
, pp.
66
81
.
120.
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 1994, “
On Statistics of First-Passage Failure
,”
ASME J. Appl. Mech.
0021-8936,
61
(
1
), pp.
93
99
.
121.
Gan
,
C. B.
, and
Zhu
,
W. Q.
, 2001, “
First-Passage Failure of Quasi-Non-Integrable-Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
36
, pp.
209
220
.
122.
Zhu
,
W. Q.
,
Deng
,
M. L.
, and
Huang
,
Z. L.
, 2002, “
First-Passage Failure of Quasi-Integrable Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
274
282
.
123.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Deng
,
M. L.
, 2003, “
First-Passage Failure and its Feedback Minimization of Quasi-Partially Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
1133
1148
.
124.
Zhu
,
W. Q.
, and
Lei
,
Y.
, 1989, “
First Passage Time for State Transition of Randomly Excited Systems
,”
Proc. of 47th Session of Int. Statistical Inst. Vol. LIII
(Invited papers), Book3, pp.
517
531
.
125.
Zhu
,
W. Q.
, and
Wu
,
Y. J.
, 2003, “
First-Passage Time of Duffing Oscillator Under Combined Harmonic and White-Noise Excitations
,”
Nonlinear Dyn.
0924-090X,
32
, pp.
291
305
.
126.
Housner
,
G. W.
, et al.
, 1997, “
Structural Control: Past, Present and Future
,”
J. Eng. Mech.
0733-9399,
123
, pp.
897
971
.
127.
Yoshida
,
K.
, 1984, “
A Method of Optimal Control of Nonlinear Stochastic Systems With Nonquadratic Criteria
,”
Int. J. Control
0020-7179,
39
(
2
), pp.
279
291
.
128.
Chang
,
R. J.
, 1991, “
Optimal Linear Feedback Control for a Class of Nonlinear Nonquadratic Non-Gaussian Problem
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
(
4
),
569
574
.
129.
Liberzon
,
D.
, and
Brockett
,
R. W.
, 2000, “
Nonlinear Feedback Systems Perturbed by Noise: Steady-State Probability Distribution and Optimal Control
,”
IEEE Autom. Contr.
,
45
(
6
), pp.
1116
1130
.
130.
Bratus
,
A.
, et al.
, 2000, “
Hybrid Solution Method for Dynamic Programming Equations for MDOF Stochastic Systems
,”
Dyn. Control
0925-4668,
10
(
1
), pp.
107
116
.
131.
Crespo
,
L. G.
, and
Sun
,
J. Q.
, 2003, “
Nolinear Stochastic Control via Stationary Response Design
,”
Probab. Eng. Mech.
0266-8920,
18
, pp.
79
86
.
132.
Kushner
,
H. J.
, 1990, “
Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems
,
Birkhauser
,
Boston
.
133.
Kushner
,
H. J.
, and
Rungguldier
,
W. J.
, 1987, “
Nearly Optimal State Feedback Control for Stochastic Systems With Wide-Band Noise Disturbances
,”
SIAM J. Control Optim.
0363-0129,
25
, pp.
298
315
.
134.
Zhu
,
W. Q.
, and
Ying
,
Z. G.
, 1999, “
Optimal Nonlinear Feedback Control of Quasi-Hamiltonian Systems
,”
Sci. China, Ser. A: Math., Phys., Astron.
1006-9283,
42
, pp.
1213
1219
.
135.
Zhu
,
W. Q.
,
Ying
,
Z. G.
, and
Soong
,
T. T.
, 2001, “
An Optimal Nonlinear Feedback Control Strategy for Randomly Excited Structural Systems
,”
Nonlinear Dyn.
0924-090X,
24
, pp.
31
51
.
136.
Zhu
,
W. Q.
, and
Deng
,
M. L.
, 2004, “
Optimal Bounded Control for Minimizing the Response of Quasi Nonintegrable Hamiltonian Systems
,”
Nonlinear Dyn.
0924-090X,
35
, pp.
81
100
.
137.
Zhu
,
W. Q.
, and
Deng
,
M. L.
, 2004, “
Optimal Bounded Control for Minimizing the Response of Quasi Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
1535
1546
.
138.
Zhu
,
W. Q.
, and
Wu
,
Y. J.
, 2005, “
Optimal Bounded Control of Strongly Nonlinear Oscillator Under Combined Harmonic and White-Noise Excitations
,”
Probab. Eng. Mech.
0266-8920,
20
(
1
), pp.
1
9
.
139.
Zhu
,
W. Q.
,
Ying
,
Z. G.
,
Ni
,
Y. Q.
, and
KOJM
, 2000, “
Optimal Nonlinear Stochastic Control of Hysteretic Structures
,”
J. Eng. Mech.
0733-9399,
126
, pp.
1027
1032
.
140.
Wonham
,
W. M.
, 1968, “
On the Separation Theorem of Stochastic Control
,”
SIAM J. Control
0036-1402,
6
, pp.
312
326
.
141.
Bensoussan
,
A.
, 1992,
Stochastic Control of Partially Observable Systems
,
Cambridge University Press
,
Cambridge, UK
.
142.
Zhu
,
W. Q.
, and
Ying
,
Z. G.
, 2002, “
Nonlinear Stochastic Optimal Control of Partially Observable Linear Structures
,”
Eng. Struct.
0141-0296,
24
, pp.
333
342
.
143.
Zhu
,
W. Q.
,
Luo
,
M.
, and
Ying
,
Z. G.
, 2004, “
Nonlinear Stochastic Optimal Control of Tall Buildings Under Wind Loading
,”
Eng. Struct.
0141-0296,
26
, pp.
1561
1572
.
144.
Charalambous
,
C. D.
, and
Elliott
,
R. J.
, 1998, “
Classes of Nonlinear Partially Observable Stochastic Optimal Control Problems With Explicit Optimal Control Law
,”
SIAM J. Control Optim.
0363-0129,
36
, pp.
542
578
.
145.
Zhu
,
W. Q.
, and
Ying
,
Z. G.
, 2004, “
On Stochastic Optimal Control of Partially Observable Nonlinear Quasi Hamiltonian Systems
,”
J. Zhejiang Univ. Sci.
,
5
(
11
), pp.
1313
1317
.
146.
Jansen
,
L. M.
, and
Dyke
,
S. J.
, 2000, “
Semi-Active Control Strategy for MR Dampers: Comparative Study
,”
J. Eng. Mech.
0733-9399,
126
, pp.
795
803
.
147.
Ying
,
Z. G.
,
Zhu
,
W. Q.
, and
Soong
,
T. T.
, 2003, “
A Stochastic Optimal Semi-Active Control Strategy for ER/MR Dampers
,”
J. Sound Vib.
0022-460X,
259
, pp.
45
62
.
148.
Dong
,
L.
,
Ying
,
Z. G.
, and
Zhu
,
W. Q.
, 2004, “
Stochastic Optimal Semi-Active Control of Nonlinear Systems Using MR Damper
,”
Adv. Struct. Eng.
1369-4332,
7
, pp.
485
494
.
149.
Zhu
,
W. Q.
,
Luo
,
M.
, and
Dong
,
L.
, 2004, “
Semi-Active Control of Wind Excited Building Structures Using MR/ER Dampers
,”
Probab. Eng. Mech.
0266-8920,
19
, pp.
279
285
.
150.
Florchinger
,
P.
, 1997, “
Feedback Stabilization of Affine in the Control Stochastic Differential Systems by the Control Lyapunov Function Method
,”
SIAM J. Control Optim.
0363-0129,
35
, pp.
500
511
.
151.
Zhu
,
W. Q.
, 2004, “
Feedback Stabilization of Quasi Nonintegrable Hamiltonian Systems by Using Lyapunov Exponent
,”
Nonlinear Dyn.
0924-090X,
36
, pp.
455
470
.
152.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
, 2003, “
Feedback Stabilization of Quasi-Integrable Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
129
136
.
153.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
, 2003, “
Stochastic Stabilization of Quasi Partially Integrable Hamiltonian Systems by Using Lyapunov Exponent
,”
Nonlinear Dyn.
0924-090X,
33
, pp.
209
224
.
154.
Zhu
,
W. Q.
,
Huang
,
Z. L.
,
Ko
,
J. M.
, and
Ni
,
Y. Q.
, 2004, “
Optimal Feedback Control of Strongly Nonlinear Oscillator Excited by Bounded Noise
,”
J. Sound Vib.
0022-460X,
274
, pp.
701
724
.
155.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
, 2004, “
Stochastic Stabilization of Quasi Noniintegrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
879
895
.
156.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Deng
,
M. L.
, 2002, “
Feedback Minimization of First-Passage Failure of Quasi Nonintegrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
1057
1071
.
157.
Zhu
,
W. Q.
, and
Wu
,
Y. J.
, 2004, “
Optimal Bounded Control of First-Passage Failure of Strongly Nonlinear Oscillators Under Combined Harmonic and White Noise Excitations
,”
J. Sound Vib.
0022-460X,
271
(
1
), pp.
83
101
.
158.
Cheng
,
M.
,
Zhu
,
W. Q.
, and
Ying
,
Z. G.
, 2006, “
Stochastic Optimal Semi-Active Control of Hysteretic Systems by Using a Magnetorheological Damper
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
711
718
.
You do not currently have access to this content.