We revisit the issue of finding proper boundary conditions for the field equations describing incompressible flow problems, for quantities like pressure or vorticity, which often do not have immediately obvious “physical” boundary conditions. Most of the issues are discussed for the example of a primitive-variables formulation of the incompressible Navier-Stokes equations in the form of momentum equations plus the pressure Poisson equation. However, analogous problems also exist in other formulations, some of which are briefly reviewed as well. This review article cites 95 references.

1.
Peyret
,
R.
, and
Taylor
,
T. D.
, 1983,
Computational Methods for Fluid Flow
.
Springer-Verlag
, Berlin.
2.
Ferziger
,
J. H.
, 1987, “
Simulation of Incompressible Turbulent Flows
,”
J. Comput. Phys.
0021-9991,
69
(
1
), pp.
1
48
.
3.
Quartapelle
,
L.
, 1993,
Numerical Solution of the Incompressible Navier-Stokes Equations, International Series of Numerical Mathematics
, Vol. 113,
Birkhäuser-Verlag
, Basel.
4.
Pironneau
,
O.
, 1986, “
Conditions aux Limites sur la Pression Pour les Équations de Stokes et de Navier-Stokes
,”
C. R. Acad. Sci., Ser. I: Math.
0764-4442,
309
(
9
), pp.
403
406
.
5.
Gatski
,
T. B.
,
Grosch
,
C. E.
, and
Rose
,
M. E.
, 1982, “
A Numerical Study of the Two-Dimensional Navier-Stokes Equations in Vorticity-Velocity Variables
,”
J. Comput. Phys.
0021-9991,
48
, pp.
1
22
.
6.
Gatski
,
T. B.
,
Grosch
,
C. E.
, and
Rose
,
M. E.
, 1989, “
A Numerical Solution of the Navier-Stokes Equations for 3-Dimensional, Unsteady, Incompressible Flows by Compact Schemes
,”
J. Comput. Phys.
0021-9991,
82
, pp.
298
329
.
7.
Gatski
,
T. B.
,
, 1991, “
Review of Incompressible Fluid Flow Computations Using the Vorticity-Velocity Formulation
,”
Appl. Numer. Math.
0168-9274,
7
, pp.
227
239
.
8.
Osswald
,
G. A.
,
Ghia
,
K. N.
, and
Ghia
,
U.
, 1988, “
Direct Solution Methodologies for the Unsteady Dynamics of an Incompressible Fluid
,”
S. N.
Atluri
,
G.
Yagawa
, eds.,
International Conf. on Computational Eng. Sci.
, Vol.
2
, Atlanta,
Springer-Verlag
,
Berlin
.
9.
Marques
,
F.
, 1990, “
On Boundary Conditions for Velocity Potential in Confined Flows: Application to Couette flow
,”
Phys. Fluids A
0899-8213,
2
(
5
), pp.
729
737
.
10.
Hughes
,
T.
, Jr.
, and
Franca
,
D. P.
, 1987, “
A New Finite Element Formulation on for Computational Fluid Dynamics: VII. The Stokes Problem With Various Well-Posed Boundary Conditions: Symmetric Formulations that Converge for All Velocity/Pressure Spaces
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
65
, pp.
85
96
.
11.
Glowinski
,
R.
, 1992, “
Finite Element Methods for Navier-Stokes Equations
,”
Annu. Rev. Fluid Mech.
0066-4189,
24
, pp.
167
204
.
12.
Gresho
,
P. M.
, 1992, “
Some Interesting Issues in Incompressible Fluid Dynamics, Both in the Continuum and in Numerical Simulation
,”
Adv. Appl. Mech.
0065-2156,
28
, pp.
45
140
.
13.
Gresho
,
P. M.
,
Sani
,
R. L.
, and
Engelman
,
M. S.
, 2000,
Incompressible Flow and the Finite Element Method
,
Wiley
, New York.
14.
Moin
,
P.
, and
Kim
,
J.
, 1980, “
On the Numerical Solution of Time-Dependent Viscous Incompressible Fluid Flows Involving Solid Boundaries
,
J. Comput. Phys.
0021-9991,
35
(
3
), pp.
381
392
.
15.
Strikwerda
,
J. C.
, 1997, “
High-Order Accurate Schemes for Incompressible Viscous Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
24
(
7
), pp.
715
734
.
16.
Yanenko
,
N. N.
, 1971,
The Method of Fractional Steps
.
Springer-Verlag
, Berlin.
17.
Chorin
,
A. J.
, 1968, “
Numerical Solution of Incompressible Flow Problems
,”
Stud. Numer. Anal.
,
2
, pp.
64
71
.
18.
Chorin
,
A. J.
, 1968, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
0025-5718,
22
, pp.
745
762
.
19.
Chorin
,
A. J.
, 1969, “
On the Convergence of Discrete Approximations to the Navier-Stokes Equations
,”
Math. Comput.
0025-5718,
23
, pp.
341
353
.
20.
Temam
,
R.
, 1969, “
Sur 1’ Approximation de la Solution des Équations de Navier-Stokes par la Méthode des pas fractionnaires (I)
,”
Arch. Ration. Mech. Anal.
0003-9527,
32
, pp.
135
153
.
21.
Temam
,
R.
, 1969, “
Sur 1’ Approximation de la Solution des Équations de Navier-Stokes par la Méthode de pas fractionnaires (II)
,”
Arch. Ration. Mech. Anal.
0003-9527,
33
, pp.
377
385
.
22.
Temam
,
R.
, 1977,
Navier-Stokes Equations
,
North Holland
, Amsterdam.
23.
Temam
,
R.
, 1991, “
Remark on the Pressure Boundary Condition for the Projection Method
,”
Theor. Comput. Fluid Dyn.
0935-4964,
3
, pp.
181
184
.
24.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
59
(
2
), pp.
308
323
.
25.
Ladyzhenskaya
,
O. A.
, 1969, “
Theory of Viscous Incompressible Flow
,
Gordon and Breach
, New York.
26.
Chorin
,
A. J.
, 1990,
Mathematical Introduction to Fluid Mechanics
, 2nd ed.,
Springer-Verlag
, Berlin.
27.
Alfrink
,
B. J.
, 1985, “
On the Neumann Problem for the Pressure in a Navier-Stokes Model
,”
Proc. of 2nd International Conference on Numerical Methods in Laminar and Turbulent Flow
,
Pineridge Press
,
Swansea
, UK, pp.
389
399
.
28.
Gustafson
,
K.
, and
Halasi
,
K.
, 1983, “
On the Divergence-Free (i.e., Mass Conservation, Solenoidal) Condition in Computational Fluid Dynamics: How Important Is It?
,”
Numerical Methods in Laminar and Turbulent Flow
,
Pineridge Press
, Swansea, UK, pp.
617
626
.
29.
Orszag
,
S. A.
,
Israeli
,
M.
, and
Deville
,
M. O.
, 1986, “
Boundary Conditions for Incompressible Flows
,”
J. Sci. Comput.
0885-7474,
1
(
1
), pp.
75
111
.
30.
Marcus
,
P. S.
, 1984, “
Simulation of Taylor-Couette Flow, Part 1: Numerical Methods and Comparison With Experiment
,”
J. Fluid Mech.
0022-1120,
146
, pp.
45
64
.
31.
Le
,
H.
, and
Moin
,
P.
, 1991, “
An Improvement of Fractional Step Methods for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
92
, pp.
369
379
.
32.
Dukowicz
,
J. K.
, and
Dvinsky
,
A. S.
, 1992, “
Approximate Factorization as a High-Order Splitting for the Implicit Incompressible Flow Equations
,
J. Comput. Phys.
0021-9991,
102
, pp.
336
347
.
33.
Perot
,
J. B.
, 1993, “
An Analysis of the Fractional Step Method
,”
J. Comput. Phys.
0021-9991,
108
(
1
), pp.
51
58
.
34.
Perot
,
J. B.
, 1995, “
Comments on the Fractional Step Method
,”
J. Comput. Phys.
0021-9991,
121
(
1
), pp.
190
191
.
35.
E.
W.
, and
Liu
,
J.-G.
, 1995, “
Projection Method I, Convergence and Numerical Boundary Layers
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
32
, pp.
1017
1157
.
36.
E.
W.
, and
Liu
,
J.-G.
, 1996, “
Projection Method II, Godunov-Ryabenki Analysis
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
33
, pp.
1597
1621
.
37.
Strikwerda
,
J. C.
, and
Lee
,
Y. S.
, 1999, “
The Accuracy of the Fractional Step Method
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
37
(
1
), pp.
37
47
.
38.
Armfield
,
S.
, and
Street
,
R.
, 1999, “
The Fractional-Step Method for the Navier-Stokes Equations on Staggered Grids: The Accuracy of Three Variations
,”
J. Comput. Phys.
0021-9991,
153
(
2
), pp.
660
665
.
39.
Protter
,
M. H.
, and
Weinberger
,
H. F.
, 1984,
Maximum Principles in Differential Equations
,
Springer-Verlag
, Berlin.
40.
Ghia
,
K. N.
, 1979, “
Use of Primitive Variables in the Solution of Incompressible Navier-Stokes Equations
,”
AIAA J.
0001-1452,
17
(
3
), pp.
298
301
.
41.
Kleiser
,
L.
,
Härtel
,
C.
, and
Wintergerste
,
T.
, 1998, “
There is no Error in the Kleiser-Schumann Influence Matrix Method
,”
J. Comput. Phys.
0021-9991,
141
, pp.
85
87
.
42.
Kleiser
,
L.
, and
Schumann
,
U.
, 1980, “
Treatment of Incompressibility and Boundary Conditions in 3-D Numerical Spectral Simulations of Plane Channel Flows
,”
E. H.
Hirschel
, ed.,
Notes on Numerical Fluid Mechanics
,
Vieweg
, Braunschweig, p.
165
.
43.
Gresho
,
P. M.
, and
Sani
,
R. L.
, 1987, “
On Pressure Boundary Conditions for the Incompressible Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
0271-2091,
7
(
10
), pp.
1111
1145
.
44.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
, 1988, “
Spectral Methods in Fluid Dynamics
,
Springer-Verlag
, Berlin.
45.
Daube
,
O.
, 1992, “
Resolution of the 2nd Navier-Stokes Equations in Velocity-Vorticity Form by Means of an Influence Matrix Technique
,”
J. Comput. Phys.
0021-9991,
103
(
2
), pp.
402
414
.
46.
Tuckerman
,
L. S.
, 1989, “
Divergence-Free Velocity Fields in Nonperiodic Geometries
,”
J. Comput. Phys.
0021-9991,
80
(
2
), pp.
403
441
.
47.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydromagnetic Stability, The International Series of Monographs on Physics
,
Clarendon Press
, Oxford.
48.
Kress
,
B. T.
, and
Montgomery
,
D. C.
, 2000, “
Pressure Determinations for Incompressible Fluids
,”
J. Plasma Phys.
0022-3778,
64
(
4
), pp.
371
377
.
49.
Heywood
,
J. G.
, 1980, “
The Navier-Stokes Equations: On the Existence, Regularity and Decay of Solutions
,”
Indiana Univ. Math. J.
0022-2518,
29
(
5
), pp.
639
680
.
50.
Glowinski
,
R.
, and
Pironneau
,
O.
, 1978, “
Approximation par Element Finis Mixtes du Probleme de Stokes en Formulation Vitesse-Pression, Convergence des Solutions Approches
,”
C. R. Hebd. Seances Acad. Sci.
0001-4036,
286A
, pp.
181
183
.
51.
Glowinski
,
R.
, and
Pironneau
,
O.
, 1978, “
Approximation par Element Finis Mixtes du Probleme de Stokes en Formulation Vitesse-Pression: Resolution des problemes approches
,”
C. R. Hebd. Seances Acad. Sci.
0001-4036,
286A
, pp.
225
228
.
52.
Glowinski
,
R.
, and
Pironneau
,
O.
, 1979, “
On a Mixed Finite Element Approximation of the Stroke Problem. I. Convergence of the Approximate Solution
,”
Numer. Math.
0029-599X,
33
, pp.
397
424
.
53.
Glowinski
,
R.
,
Mantel
,
B.
,
Periaux
,
J.
, and
Pironneau
,
O.
, 1980, “
A Finite Element Approximation of Navier-Stokes Equations for Incompressible Viscous Fluids: Functional Least-Square Methods of Solution
,
K.
Morgan
,
C.
Taylor
, and
C. A.
Brebbia
, eds.,
Computer Methods in Fluids
,
Pentech Press
,
London
.
54.
Thomasset
,
F.
, 1981,
Implementation of Finite Element Methods for Navier-Stokes Equations
,
Springer-Verlag
, Berlin.
55.
Orszag
,
S. A.
, and
Israeli
,
M.
, 1974, “
Numerical Simulations of Viscous Incompressible Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
6
, pp.
281
318
.
56.
Quartapelle
,
L.
, and
Napolitano
,
M.
, 1986, “
Integral Condition for the Pressure in the Computation of Incompressible Viscous Flows
,”
J. Comput. Phys.
0021-9991,
62
(
2
), pp.
340
348
.
57.
Daube
,
Q.
,
Guermond
,
J. L.
, and
Sellier
,
A.
, 1991, “
On the Velocity-Vorticity Formulation of Navier-Stokes Equations in Incompressible Flow
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
0764-4450,
313
(
4
), pp.
377
382
.
58.
Strikwerda
,
J. C.
, 1984, “
Finite Difference Methods for the Stokes and Navier-Stokes Equations
,
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
5
(
1
), pp.
56
68
.
59.
Heywood
,
J. G.
, and
Rannacher
,
R.
, 1982, “
Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
19
(
2
), pp.
275
311
.
60.
Gresho
,
P. M.
, 1991, “
Incompressible Fluid Dynamics: Some Fundamental Formulation Issues
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
413
453
.
61.
Roache
,
P. J.
, 1999,
Computational Fluid Dynamics
, rev. print. ed.,
Hermosa Publisher
, Albuquerque.
62.
Fasel
,
H.
, 1976, “
Investigation of the Stability of Boundary Layers by a Finite-Difference Model of the Navier-Stokes Equations
,”
J. Fluid Mech.
0022-1120,
78
(
2
), pp.
355
383
.
63.
Kloker
,
M. J.
, 1997, “
A Robust High-Resolution Split-Type Compact FD Scheme for Spatial Direct Numerical Simulation of Boundary-Layer Transition
,”
LES and DNS of Complex Flows
, Kluwer, Dordrecht,
Applied Scientific Research
, Vol.
59
, pp.
353
377
.
64.
Meitz
,
H. L.
, and
Fasel
,
H. E.
, 2000, “
A Compact-Difference Scheme for the Navier-Stokes Equations in Vorticity Velocity Formulation
,”
J. Comput. Phys.
0021-9991,
157
(
1
), pp.
371
403
.
65.
Rist
,
U.
, and
Fasel
,
H.
, 1995, “
Direct Numerical Simulation of Controlled Transition in a Flat-Plate Boundary Layer
,”
J. Fluid Mech.
0022-1120,
298
, pp.
211
248
.
66.
Fasel
,
H.
, 1974, “
Untersuchugen zum Problem des Grenzschichtumschlages durch numerische Integration der Navier-Stokes Gleichungen
,” dissertation, Universität Stuttgart.
67.
Fasel
,
H.
, 1990, personal communication.
68.
Dennis
,
S. C. R.
,
, and
Quartapelle
,
L.
, 1983, “
Direct Solution of the Vorticity-Streamfunction Ordinary Differential Equations by a Chebyshev Approximation
,”
J. Comput. Phys.
0021-9991,
52
, pp.
448
463
.
69.
Farouk
,
B.
, and
Fusegi
,
T.
, 1985, “
A Coupled Solution of the Vorticity-Velocity Formulation of the Incompressible Navier-Stokes Equations
,
Int. J. Numer. Methods Fluids
0271-2091,
5
, pp.
1017
1034
.
70.
Napolitano
,
M.
, and
Pascazio
,
G.
, 1991, “
A Numerical Method for the Vorticity-Velocity Navier-Stokes Equation in Two and Three Dimensions
,”
Comput. Fluids
0045-7930,
19
, pp.
489
495
.
71.
Orlandi
,
P.
, 1987, “
Vorticity Velocity Method for High Reynolds Numbers
,”
Comput. Fluids
0045-7930,
15
(
2
), pp.
137
148
.
72.
Stella
,
F.
, and
Guj
,
G.
, 1989, “
Vorticity-Velocity Formulation in the Computation of Flows in Multiconnected Domains
,”
Int. J. Numer. Methods Fluids
0271-2091,
9
, pp.
1285
1298
.
73.
Clercx
,
H. J. H.
, 1997, “
A Spectral Solver for the Navier-Stokes Equations in the Velocity-Vorticity Formulation for Flows With Two Nonperiodic Directions
,”
J. Comput. Phys.
0021-9991,
137
(
1
), pp.
186
211
.
74.
Trujillo
,
J.
, and
Karniadakis
,
G. E.
, 1999, “
A Penalty Method for the Vorticity-Velocity Formulation
,”
J. Comput. Phys.
0021-9991,
149
(
1
), pp.
32
58
.
75.
Davies
,
C.
, and
Carpenter
,
P. W.
, 2001, “
A Novel Velocity-Vorticity Formulation of the Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
172
, pp.
119
165
.
76.
Dennis
,
S. C. R.
,
, and
Staniforth
,
A. N.
, 1971, “
A Numerical Method for Calculating the Initial Flow Past a Cylinder in a Viscous Fluid
,”
M.
Holt
, ed.,
2nd Internat. Conf. Num. Meth. Fluid Dyn.
,
Springer-Verlag
, Berlin, Lecture Notes in Physics, Vol.
8
, pp.
343
349
.
77.
Thoman
,
D. C.
, and
Szewczyk
,
A. A.
, 1969, “
Time-Dependent Viscous Flow Over a Circular Cylinder
,”
Phys. Fluids
0031-9171,
12
(
II
), pp.
76
87
.
78.
Rimon
,
Y.
, and
Cheng
,
S. I.
, 1969, “
Numerical Solution of a Uniform Flow Over a Sphere at Intermediate Reynolds Numbers
,”
Phys. Fluids
0031-9171,
12
(
5
), pp.
949
959
.
79.
Campion-Renson
,
A.
, and
Crochet
,
M. J.
, 1978, “
On the Stream Function Vorticity Finite Element Solutions of Navier-Stokes Equations
,”
Int. J. Numer. Methods Eng.
0029-5981,
12
, pp.
1809
1818
.
80.
Thom
,
A.
, 1933, “
The Flow Past Circular Cylinders at Low Speeds
,”
Proc. R. Soc. London, Ser. A
0950-1207,
141
, pp.
651
666
.
81.
Fromm
,
J. E.
, 1963, “
A Method for Computing Nonsteady Incompressible Viscous Fluid Flows
,” Technical Report No. LA-2910, Los Alamos National Laboratory.
82.
Wilkes
,
J. O.
, 1963, Ph.D. thesis, University of Michigan.
83.
Pearson
,
C. E.
, 1965, “
Numerical Solutions for the Time-Dependent Viscous Flow Between Two Rotating Disks
,”
J. Fluid Mech.
0022-1120,
21
, pp.
623
633
.
84.
Woods
,
L. C.
, 1954, “
A Note on the Numerical Solution of Forth Order Differential Equations
,”
Aeronaut. Q.
0001-9259,
5
, pp.
176
180
.
85.
Barrett
,
K. E.
, 1978, “
A Variational Principle for the Stream-Function Vorticity Formulation of the Navier-Stokes Equations Incorporating No-Slip Conditions
,
J. Comput. Phys.
0021-9991,
26
, pp.
153
161
.
86.
Richardson
,
S. M.
, and
Cornish
,
A. R. H.
, 1977, “
Solution of Three-Dimensional Incompressible Problems
,”
J. Fluid Mech.
0022-1120,
82
, pp.
309
319
.
87.
Quartapelle
,
L.
, and
Valz-Gris
,
F.
, 1981, “
Projection Conditions on the Vorticity in Viscous Incompressible Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
1
, pp.
129
144
.
88.
Quartapelle
,
L.
, 1981, “
Vorticity Conditioning in the Computation of Two-Dimensional Viscous Flows
,”
J. Comput. Phys.
0021-9991,
40
, pp.
453
477
.
89.
Tuckerman
,
L. S.
, 1983, Ph.D. thesis, MIT.
90.
Anderson
,
C. R.
, 1989, “
Vorticity Boundary Conditions and Boundary Vorticity Generation for Two-Dimensional Viscous Incompressible Flow
,”
J. Comput. Phys.
0021-9991,
80
, pp.
72
97
.
91.
Chorin
,
A. J.
, 1973, “
Numerical Study of Slightly Viscous Flow
,”
J. Fluid Mech.
0022-1120,
57
, pp.
785
796
.
92.
Chorin
,
A. J.
, 1978, “
Vortex Sheet Approximation of Boundary Layers
,”
J. Comput. Phys.
0021-9991,
27
, pp.
428
442
.
93.
Chorin
,
A. J.
, 1980, “
Vortex Models and Boundary Layers Instability
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
1
(
1
) pp.
1
21
.
94.
E.
W.
, and
Liu
,
J. G.
, 1996, “
Vorticity Boundary Condition and Related Issues for Finite Difference Schemes
,”
J. Comput. Phys.
0021-9991,
124
(
2
), pp.
368
382
.
95.
Morton
,
B. R.
, 1984, “
The Generation and Decay of Vorticity
,”
Geophys. Astrophys. Fluid Dyn.
0309-1929,
28
, pp.
277
308
.
You do not currently have access to this content.