Abstract

A series of recent papers have modified the classical variational phase field fracture models to successfully predict both the nucleation and propagation of cracks in brittle fracture under general loading conditions. This is done through the introduction of a consistent crack nucleation driving force in the phase field governing equations, which results in the model being able to capture both the strength surface and fracture toughness of the material. This driving force has been presented in the literature for the case of Drucker–Prager strength surface and specific choice of stress states on the strength surface that are captured exactly for finite values of the phase field regularization length ε. Here, we present an explicit analytical expression for this driving force given a general material strength surface when the functional form of the strength locus is linear in the material parameter coefficients. In the limit ε0, the formulation reproduces the exact material strength surface and for finite ε the strength surface is captured at any n ‘distinct’ points on the strength surface where n is the minimum number of material coefficients required to describe it. The presentation of the driving force in the current work facilitates the easy demonstration of its consistent nature. Furthermore, in the equation governing crack nucleation, the toughness in the classical models is shown to be replaced by an effective toughness in the modified theory that is dependent on the stress. The derived analytical expressions are verified via application to the widely employed Mohr–Coulomb and Drucker–Prager strength surfaces.

References

1.
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
(
8
), pp.
1319
1342
.
2.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids
,
48
(
4
), pp.
797
826
.
3.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2008
, “
The Variational Approach to Fracture
,”
J. Elast.
,
91
(
1–3
), pp.
5
148
.
4.
Lopez-Pamies
,
O.
,
Dolbow
,
J. E.
,
Francfort
,
G. A.
, and
Larsen
,
C. J.
,
2025
, “
Classical Variational Phase-Field Models Cannot Predict Fracture Nucleation
,”
Comput. Methods Appl. Mech. Eng.
,
433
, p.
117520
.
5.
Kumar
,
A.
,
Francfort
,
G. A.
, and
Lopez-Pamies
,
O.
,
2018
, “
Fracture and Healing of Elastomers: A Phase-Transition Theory and Numerical Implementation
,”
J. Mech. Phys. Solids
,
112
, pp.
523
551
.
6.
Kumar
,
A.
,
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Lopez-Pamies
,
O.
,
2020
, “
Revisiting Nucleation in the Phase-Field Approach to Brittle Fracture
,”
J. Mech. Phys. Solids
,
142
, p.
104027
.
7.
Kamarei
,
F.
,
Dolbow
,
J. E.
, and
Lopez-Pamies
,
O.
,
2025
, “
Nucleation of Fracture: The First-Octant Evidence Against Classical Variational Phase-Field Models
,”
ASME J. Appl. Mech.
,
92
(
1
), p.
014502
.
8.
Kumar
,
A.
,
Ravi-Chandar
,
K.
, and
Lopez-Pamies
,
O.
,
2018
, “
The Configurational-Forces View of the Nucleation and Propagation of Fracture and Healing in Elastomers as a Phase Transition
,”
Int. J. Fract.
,
213
(
1
), pp.
1
16
.
9.
Kumar
,
A.
, and
Lopez-Pamies
,
O.
,
2020
, “
The Phase-Field Approach to Self-healable Fracture of Elastomers: A Model Accounting for Fracture Nucleation at Large, With Application to a Class of Conspicuous Experiments
,”
Theor. Appl. Fract. Mech.
,
107
, p.
102550
.
10.
Kumar
,
A.
, and
Lopez-Pamies
,
O.
,
2021
, “
The Poker-Chip Experiments of Gent and Lindley (1959) Explained
,”
J. Mech. Phys. Solids
,
150
, p.
104359
.
11.
Kumar
,
A.
,
Ravi-Chandar
,
K.
, and
Lopez-Pamies
,
O.
,
2022
, “
The Revisited Phase-Field Approach to Brittle Fracture: Application to Indentation and Notch Problems
,”
Int. J. Fract.
,
237
(
1–2
), pp.
83
100
.
12.
Fei
,
F.
,
Costa
,
A.
,
Dolbow
,
J. E.
,
Settgast
,
R. R.
, and
Cusini
,
M.
,
2023
, “
A Phase-Field Model for Hydraulic Fracture Nucleation and Propagation in Porous Media
,”
Int. J. Numer. Anal. Methods Geomechan.
,
47
(
16
), pp.
3065
3089
.
13.
Jia
,
Y.
,
Lopez-Pamies
,
O.
, and
Zhang
,
X. S.
,
2023
, “
Controlling the Fracture Response of Structures Via Topology Optimization: From Delaying Fracture Nucleation to Maximizing Toughness
,”
J. Mech. Phys. Solids
,
173
, p.
105227
.
14.
Kumar
,
A.
,
Liu
,
Y.
,
Dolbow
,
J. E.
, and
Lopez-Pamies
,
O.
,
2024
, “
The Strength of the Brazilian Fracture Test
,”
J. Mech. Phys. Solids
,
182
, p.
105473
.
15.
Kamarei
,
F.
,
Kumar
,
A.
, and
Lopez-Pamies
,
O.
,
2024
, “
The Poker-Chip Experiments of Synthetic Elastomers Explained
,”
J. Mech. Phys. Solids
,
188
, p.
105683
.
16.
Liu
,
C.
, and
Kumar
,
A.
,
2025
, “
Emergence of Tension-Compression Asymmetry From a Complete Phase-Field Approach to Brittle Fracture
,”
Int. J. Solids Struct.
,
309
, p.
113170
.
17.
Liu
,
Y.
,
Lopez-Pamies
,
O.
, and
Dolbow
,
J. E.
,
2024
, “On the Effects of Material Strength in Dynamic Fracture: A Phase-Field Study,” preprint arXiv:2411.16393.
18.
Larsen
,
C.
,
Dolbow
,
J.
, and
Lopez-Pamies
,
O.
,
2024
, “
A Variational Formulation of Griffith Phase-Field Fracture With Material Strength
,”
Int. J. Fract.
,
247
(
3
), pp.
319
327
.
19.
Yu
,
M.-h.
,
2002
, “
Advances in Strength Theories for Materials Under Complex Stress State in the 20th Century
,”
Appl. Mech. Rev.
,
55
(
3
), pp.
169
218
.
20.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr–Coulomb Criterion to Ductile Fracture
,”
Int. J. Fract.
,
161
(
1
), pp.
1
20
.
21.
Pham
,
K.
,
Amor
,
H.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2011
, “
Gradient Damage Models and Their Use to Approximate Brittle Fracture
,”
Int. J. Damage Mech.
,
20
(
4
), pp.
618
652
.
22.
Rivlin
,
R. S.
, and
Thomas
,
A. G.
,
1953
, “
Rupture of Rubber. I. Characteristic Energy for Tearing
,”
J. Polym. Sci.
,
10
(
3
), pp.
291
318
.
23.
Goggin
,
P.
, and
Reynolds
,
W.
,
1967
, “
The Elastic Constants of Reactor Graphites
,”
Philos. Mag.
,
16
(
140
), pp.
317
330
.
24.
Sato
,
S.
,
Awaji
,
H.
,
Kawamata
,
K.
,
Kurumada
,
A.
, and
Oku
,
T.
,
1987
, “
Fracture Criteria of Reactor Graphite Under Multiaxial Stresses
,”
Nucl. Eng. Des.
,
103
(
3
), pp.
291
300
.
25.
ELY
,
R. E.
,
1972
, “
Strength of Titania and Aluminum Silicate Under Combined Stresses
,”
J. Am. Ceram. Soc.
,
55
(
7
), pp.
347
350
.
26.
Iuga
,
M.
,
Steinle-Neumann
,
G.
, and
Meinhardt
,
J.
,
2007
, “
Ab-initio Simulation of Elastic Constants for Some Ceramic Materials
,”
Eur. Phys. J. B
,
58
(
2
), pp.
127
133
.
27.
Peng
,
Z.
,
Zhao
,
H.
, and
Li
,
X.
,
2021
, “
New Ductile Fracture Model for Fracture Prediction Ranging From Negative to High Stress Triaxiality
,”
Int. J. Plast.
,
145
, p.
103057
.
28.
Keralavarma
,
S.
,
Reddi
,
D.
, and
Benzerga
,
A.
,
2020
, “
Ductile Failure as a Constitutive Instability in Porous Plastic Solids
,”
J. Mech. Phys. Solids
,
139
, p.
103917
.
29.
Keralavarma
,
S.
, and
Chockalingam
,
S.
,
2016
, “
A Criterion for Void Coalescence in Anisotropic Ductile Materials
,”
Int. J. Plast.
,
82
, pp.
159
176
.
30.
Sidharth
,
R.
,
Nikhil
,
R.
,
Krishnan
,
S.
,
Keralavarma
,
S.
,
Moitra
,
A.
, and
Vasudevan
,
M.
,
2022
, “
Crack Initiation and Growth in 316LN Stainless Steel: Experiments and XFEM Simulations
,”
Eng. Fract. Mech.
,
274
, p.
108770
.
31.
Nikhil
,
R.
,
Krishnan
,
S.
,
Keralavarma
,
S.
,
Moitra
,
A.
, and
Vasudevan
,
M.
,
2024
, “
Application of an Instability-Based Fracture Model for Prediction of Crack Initiation in Modified 9Cr–1Mo Steel
,”
Fatigue Fract. Eng. Mater. Struct
,
8
(
2
), pp.
857
870
.
You do not currently have access to this content.