Abstract

In this work, a new inertia modulated meta-structure is proposed to enable time-dependent inertia parameters, and thereby realize non-reciprocal wave propagation via spatiotemporal modulation. The designed cell structure is composed of an oscillatory disk and a mass that slides in a guide embedded in the disk frictionlessly with prescribed motion. Effective moment of inertia and damping coefficients of the rocking motion of the cell structure are rendered time-dependent due to the inertia and Coriolis forces of the periodically sliding mass, which allows us to implement the expected spatiotemporal modulation upon a super-cell. Non-reciprocal propagation behavior of the proposed meta-structure is verified via the theoretical solution of the dispersion relation as well as the dynamic response of a finite array. Effects of modulation parameters, including the frequency, amplitude, and phase, on the unidirectional propagation characteristic are thoroughly investigated.

References

1.
Padilla
,
W. J.
,
Basov
,
D. N.
, and
Smith
,
D. R.
,
2006
, “
Negative Refractive Index Metamaterials
,”
Mater. Today
,
9
(
7–8
), pp.
28
35
.
2.
Burgos
,
S. P.
,
De Waele
,
R.
,
Polman
,
A.
, and
Atwater
,
H. A.
,
2010
, “
A Single-Layer Wide-Angle Negative-Index Metamaterial at Visible Frequencies
,”
Nat. Mater.
,
9
(
5
), pp.
407
412
.
3.
Ding
,
Y.
,
Liu
,
Z.
,
Qiu
,
C.
, and
Shi
,
J.
,
2007
, “
Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density
,”
Phys. Rev. Lett.
,
99
(
9
), p.
093904
.
4.
Liu
,
X.-N.
,
Hu
,
G.-K.
,
Huang
,
G.-L.
, and
Sun
,
C.-T.
,
2011
, “
An Elastic Metamaterial With Simultaneously Negative Mass Density and Bulk Modulus
,”
Appl. Phys. Lett.
,
98
(
25
), p.
251907
.
5.
Yu
,
K.
,
Fang
,
N. X.
,
Huang
,
G.
, and
Wang
,
Q.
,
2018
, “
Magnetoactive Acoustic Metamaterials
,”
Adv. Mater.
,
30
(
21
), p.
1706348
.
6.
Kodera
,
T.
,
Sounas
,
D. L.
, and
Caloz
,
C.
,
2013
, “
Magnetless Nonreciprocal Metamaterial (MNM) Technology: Application to Microwave Components
,”
IEEE Trans. Microwave Theory Tech.
,
61
(
3
), pp.
1030
1042
.
7.
Brandenbourger
,
M.
,
Locsin
,
X.
,
Lerner
,
E.
, and
Coulais
,
C.
,
2019
, “
Nonreciprocal Robotic Metamaterials
,”
Nat. Commun.
,
10
(
1
), p.
4608
.
8.
Kadic
,
M.
,
Milton
,
G. W.
,
van Hecke
,
M.
, and
Wegener
,
M.
,
2019
, “
3D Metamaterials
,”
Nat. Rev. Phys.
,
1
(
3
), pp.
198
210
.
9.
Nassar
,
H.
,
Yousefzadeh
,
B.
,
Fleury
,
R.
,
Ruzzene
,
M.
,
Alù
,
A.
,
Daraio
,
C.
,
Norris
,
A. N.
,
Huang
,
G.
, and
Haberman
,
M. R.
,
2020
, “
Nonreciprocity in Acoustic and Elastic Materials
,”
Nat. Rev. Mater.
,
5
(
9
), pp.
667
685
.
10.
Zheng
,
Y.
,
Zhang
,
J.
,
Qu
,
Y.
, and
Meng
,
G.
,
2021
, “
Adaptive Nonreciprocal Wave Attenuation in Linear Piezoelectric Metastructures Shunted With One-Way Electrical Transmission Lines
,”
J. Sound Vib.
,
503
, p.
116113
.
11.
Tian
,
T.
,
Zhang
,
Y.
,
Zhang
,
L.
,
Wu
,
L.
,
Lin
,
S.
,
Zhou
,
J.
,
Duan
,
C.-K.
,
Jiang
,
J.-H.
, and
Du
,
J.
,
2022
, “
Experimental Realization of Nonreciprocal Adiabatic Transfer of Phonons in a Dynamically Modulated Nanomechanical Topological Insulator
,”
Phys. Rev. Lett.
,
129
(
21
), p.
215901
.
12.
Nagulu
,
A.
,
Reiskarimian
,
N.
, and
Krishnaswamy
,
H.
,
2020
, “
Non-Reciprocal Electronics Based on Temporal Modulation
,”
Nat. Electron.
,
3
(
5
), pp.
241
250
.
13.
Shao
,
L.
,
Mao
,
W.
,
Maity
,
S.
,
Sinclair
,
N.
,
Hu
,
Y.
,
Yang
,
L.
, and
Lončar
,
M.
,
2020
, “
Non-Reciprocal Transmission of Microwave Acoustic Waves in Nonlinear Parity–Time Symmetric Resonators
,”
Nat. Electron.
,
3
(
5
), pp.
267
272
.
14.
Shalaby
,
M.
,
Peccianti
,
M.
,
Ozturk
,
Y.
, and
Morandotti
,
R.
,
2013
, “
A Magnetic Non-Reciprocal Isolator for Broadband Terahertz Operation
,”
Nat. Commun.
,
4
(
1
), p.
1558
.
15.
Xu
,
M.
,
Yamamoto
,
K.
,
Puebla
,
J.
,
Baumgaertl
,
K.
,
Rana
,
B.
,
Miura
,
K.
,
Takahashi
,
H.
,
Grundler
,
D.
,
Maekawa
,
S.
, and
Otani
,
Y.
,
2020
, “
Nonreciprocal Surface Acoustic Wave Propagation Via Magneto-Rotation Coupling
,”
Sci. Adv.
,
6
(
32
), p.
eabb1724
.
16.
Mahmoud
,
A. M.
,
Davoyan
,
A. R.
, and
Engheta
,
N.
,
2015
, “
All-Passive Nonreciprocal Metastructure
,”
Nat. Commun.
,
6
(
1
), p.
8359
.
17.
Dobrykh
,
D.
,
Yulin
,
A.
,
Slobozhanyuk
,
A.
,
Poddubny
,
A.
, and
Kivshar
,
Y. S.
,
2018
, “
Nonlinear Control of Electromagnetic Topological Edge States
,”
Phys. Rev. Lett.
,
121
(
16
), p.
163901
.
18.
Sounas
,
D. L.
, and
Alù
,
A.
,
2017
, “
Non-Reciprocal Photonics Based on Time Modulation
,”
Nat. Photonics
,
11
(
12
), pp.
774
783
.
19.
Correas-Serrano
,
D.
,
Alù
,
A.
, and
Gomez-Diaz
,
J. S.
,
2018
, “
Magnetic-Free Nonreciprocal Photonic Platform Based on Time-Modulated Graphene Capacitors
,”
Phys. Rev. B
,
98
(
16
), p.
165428
.
20.
Raney
,
J. R.
,
Nadkarni
,
N.
,
Daraio
,
C.
,
Kochmann
,
D. M.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2016
, “
Stable Propagation of Mechanical Signals in Soft Media Using Stored Elastic Energy
,”
Proc. Natl. Acad. Sci.
,
113
(
35
), pp.
9722
9727
.
21.
Librandi
,
G.
,
Tubaldi
,
E.
, and
Bertoldi
,
K.
,
2021
, “
Programming Nonreciprocity and Reversibility in Multistable Mechanical Metamaterials
,”
Nat. Commun.
,
12
(
1
), p.
3454
.
22.
Pal
,
A.
, and
Sitti
,
M.
,
2023
, “
Programmable Mechanical Devices Through Magnetically Tunable Bistable Elements
,”
Proc. Natl. Acad. Sci.
,
120
(
15
), p.
e2212489120
.
23.
Yin
,
J.
,
Huang
,
J.
,
Zhang
,
S.
,
Zhang
,
H.
, and
Chen
,
B.
,
2014
, “
Ultrawide Low Frequency Band Gap of Phononic Crystal in Nacreous Composite Material
,”
Phys. Lett. A
,
378
(
32–33
), pp.
2436
2442
.
24.
Lucklum
,
F.
, and
Vellekoop
,
M. J.
,
2018
, “
Bandgap Engineering of Threedimensional Phononic Crystals in a Simple Cubic Lattice
,”
Appl. Phys. Lett.
,
113
(
20
), p.
201902
.
25.
Wang
,
Q.
,
Li
,
J.
,
Zhang
,
Y.
,
Xue
,
Y.
, and
Li
,
F.
,
2021
, “
Bandgap Properties in Metamaterial Sandwich Plate With Periodically Embedded Plate-Type Resonators
,”
Mech. Syst. Signal Process
,
151
, p.
107375
.
26.
Yu
,
Z.
, and
Fan
,
S.
,
2009
, “
Complete Optical Isolation Created by Indirect Interband Photonic Transitions
,”
Nat. Photonics
,
3
(
2
), pp.
91
94
.
27.
Sounas
,
D. L.
,
Caloz
,
C.
, and
Alu
,
A.
,
2013
, “
Giant Non-Reciprocity at the Subwavelength Scale Using Angular Momentum-Biased Metamaterials
,”
Nat. Commun.
,
4
(
1
), p.
2407
.
28.
Cassedy
,
E. S.
,
1967
, “
Dispersion Relations in Time-Space Periodic Media Part II—Unstable Interactions
,”
Proc. IEEE
,
55
(
7
), pp.
1154
1168
.
29.
Trainiti
,
G.
, and
Ruzzene
,
M.
,
2016
, “
Non-Reciprocal Elastic Wave Propagation in Spatiotemporal Periodic Structures
,”
New J. Phys.
,
18
(
8
), p.
083047
.
30.
Vila
,
J.
,
Pal
,
R. K.
,
Ruzzene
,
M.
, and
Trainiti
,
G.
,
2017
, “
A Bloch-Based Procedure for Dispersion Analysis of Lattices With Periodic Time-Varying Properties
,”
J. Sound Vib.
,
406
, pp.
363
377
.
31.
Swinteck
,
N.
,
Matsuo
,
S.
,
Runge
,
K.
,
Vasseur
,
J. O.
,
Lucas
,
P.
, and
Deymier
,
P. A.
,
2015
, “
Bulk Elastic Waves With Unidirectional Backscattering-Immune Topological States in a Time-Dependent Superlattice
,”
J. Appl. Phys.
,
118
(
6
), p.
063103
.
32.
Nassar
,
H.
,
Chen
,
H.
,
Norris
,
A.
,
Haberman
,
M.
, and
Huang
,
G.
,
2017
, “
Nonreciprocal Wave Propagation in Modulated Elastic Metamaterials
,”
Proc. R. Soc. A
,
473
(
2202
), p.
20170188
.
33.
Nassar
,
H.
,
Xu
,
X. C.
,
Norris
,
A. N.
, and
Huang
,
G. L.
,
2017
, “
Modulated Phononic Crystals: Non-Reciprocal Wave Propagation and Willis Materials
,”
J. Mech. Phys. Solids
,
101
, pp.
10
29
.
34.
Hu
,
X.
,
Hang
,
Z.
,
Li
,
J.
,
Zi
,
J.
, and
Chan
,
C. T.
,
2006
, “
Anomalous Doppler Effects in Phononic Band Gaps
,”
Phys. Rev. E
,
73
(
1
), p.
015602
.
35.
Wang
,
Y.
,
Yousefzadeh
,
B.
,
Chen
,
H.
,
Nassar
,
H.
,
Huang
,
G.
, and
Daraio
,
C.
,
2018
, “
Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice
,”
Phys. Rev. Lett.
,
121
(
19
), p.
194301
.
36.
Chen
,
Y.
,
Li
,
X.
,
Nassar
,
H.
,
Norris
,
A. N.
,
Daraio
,
C.
, and
Huang
,
G.
,
2019
, “
Nonreciprocal Wave Propagation in a Continuum-Based Metamaterial With Space-Time Modulated Resonators
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064052
.
37.
Wan
,
S.
,
Cao
,
L.
,
Zeng
,
Y.
,
Guo
,
T.
,
Oudich
,
M.
, and
Assouar
,
B.
,
2022
, “
Low-Frequency Nonreciprocal Flexural Wave Propagation Via Compact Cascaded Time-Modulated Resonators
,”
Appl. Phys. Lett.
,
120
(
23
), p.
231701
.
38.
Marconi
,
J.
,
Riva
,
E.
,
Di Ronco
,
M.
,
Cazzulani
,
G.
,
Braghin
,
F.
, and
Ruzzene
,
M.
,
2020
, “
Experimental Observation of Nonreciprocal Band Gaps in a Spacetime-Modulated Beam Using a Shunted Piezoelectric Array
,”
Phys. Rev. Appl.
,
13
(
3
), p.
031001
.
39.
Sugino
,
C.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2020
, “
Nonreciprocal Piezoelectric Metamaterial Framework and Circuit Strategies
,”
Phys. Rev. B
,
102
(
1
), p.
014304
.
40.
Nash
,
L. M.
,
Kleckner
,
D.
,
Read
,
A.
,
Vitelli
,
V.
,
Turner
,
A. M.
, and
Irvine
,
W. T.
,
2015
, “
Topological Mechanics of Gyroscopic Metamaterials
,”
Proc. Natl. Acad. Sci.
,
112
(
47
), pp.
14495
14500
.
41.
Huang
,
J.
, and
Zhou
,
X.
,
2019
, “
A Time-Varying Mass Metamaterial for Nonreciprocal Wave Propagation
,”
Int. J. Solids Struct.
,
164
, pp.
25
36
.
42.
Huang
,
J.
, and
Zhou
,
X.
,
2020
, “
Non-Reciprocal Metamaterials With Simultaneously Time-Varying Stiffness and Mass
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071003
.
You do not currently have access to this content.