Abstract

The classical elasticity is inadequate for the dynamic analysis of microplates due to the size effect. This study incorporates a higher-order strain gradient theory into the Hamiltonian system-based symplectic framework and derives new analytical solutions for the free vibration of microplates. The analytical solutions are obtained using rigorous mathematical techniques, including separation of variables, symplectic eigen expansion, and superposition, without relying on predetermined solution forms. Hence, they are not restricted to Lévy-type boundary conditions. Using these analytical solutions, we present comprehensive vibration results for microplates and perform detailed parametric studies to explore the impact of length scale parameters on the natural frequencies. Given the growing demand for microplates in advanced engineering applications, the obtained analytical solutions are expected to facilitate their design and performance optimization.

References

1.
Cao
,
D.
,
Wang
,
L.
,
Wei
,
J.
, and
Nie
,
Y.
,
2020
, “
Natural Frequencies and Global Mode Functions for Flexible Jointed-Panel Structures
,”
J. Aerosp. Eng.
,
33
(
4
), p.
04020018
.
2.
Bispo
,
I. B. S.
,
Mohapatra
,
S. C.
, and
Guedes Soares
,
C.
,
2022
, “
Numerical Analysis of a Moored Very Large Floating Structure Composed by a Set of Hinged Plates
,”
Ocean Eng.
,
253
, p.
110785
.
3.
Oh
,
B.
,
Kim
,
C.
,
Lee
,
D.
,
Rho
,
J.
, and
Moon
,
W.
,
2023
, “
An Improved Analytic Model for Designing the Polymer-Composite Stepped-Plate Transducer Using the Modified Mindlin Plate Theory
,”
Ultrasonics
,
131
, p.
106933
.
4.
Lu
,
L.
,
Leanza
,
S.
, and
Zhao
,
R. R.
,
2023
, “
Origami With Rotational Symmetry: A Review on Their Mechanics and Design
,”
ASME Appl. Mech. Rev.
,
75
(
5
), p.
050801
.
5.
Li
,
R.
,
Li
,
M.
,
Su
,
Y.
,
Song
,
J.
, and
Ni
,
X.
,
2013
, “
An Analytical Mechanics Model for the Island-Bridge Structure of Stretchable Electronics
,”
Soft Matter
,
9
(
35
), pp.
8476
8482
.
6.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2014
, “
Instabilities of an Electroelastic Plate
,”
Int. J. Eng. Sci.
,
77
, pp.
79
101
.
7.
Yang
,
S.
,
Zhao
,
X.
, and
Sharma
,
P.
,
2017
, “
Revisiting the Instability and Bifurcation Behavior of Soft Dielectrics
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
031008
.
8.
Yang
,
S.
, and
Sharma
,
P.
,
2023
, “
A Tutorial on the Stability and Bifurcation Analysis of the Electromechanical Behaviour of Soft Materials
,”
ASME Appl. Mech. Rev.
,
75
(
4
), p.
044801
.
9.
Eringen
,
A. C.
,
1972
, “
Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves
,”
Int. J. Eng. Sci.
,
10
(
5
), pp.
425
435
.
10.
Eringen
,
A. C.
,
1972
, “
Nonlocal Polar Elastic Continua
,”
Int. J. Eng. Sci.
,
10
(
1
), pp.
1
16
.
11.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.
12.
Lim
,
C. W.
,
Zhang
,
G.
, and
Reddy
,
J. N.
,
2015
, “
A Higher-Order Nonlocal Elasticity and Strain Gradient Theory and Its Applications in Wave Propagation
,”
J. Mech. Phys. Solids
,
78
, pp.
298
313
.
13.
Toupin
,
R.
,
1962
, “
Elastic Materials With Couple-Stresses
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
385
414
.
14.
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2011
, “
Couple Stress Theory for Solids
,”
Int. J. Solids Struct.
,
48
(
18
), pp.
2496
2510
.
15.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2731
2743
.
16.
Wang
,
Y.-W.
,
Chen
,
J.
, and
Li
,
X.-F.
,
2024
, “
A Deviatoric Couple Stress Mindlin Plate Model and Its Degeneration
,”
Thin Walled Struct.
,
200
, p.
111978
.
17.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
417
438
.
18.
Mindlin
,
R. D.
, and
Eshel
,
N. N.
,
1968
, “
On First Strain-Gradient Theories in Linear Elasticity
,”
Int. J. Solids Struct.
,
4
(
1
), pp.
109
124
.
19.
Altan
,
B. S.
, and
Aifantis
,
E. C.
,
1997
, “
On Some Aspects in the Special Theory of Gradient Elasticity
,”
J. Mech. Behav. Mater.
,
8
(
3
), pp.
231
282
.
20.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.
21.
Zhou
,
S.
,
Li
,
A.
, and
Wang
,
B.
,
2016
, “
A Reformulation of Constitutive Relations in the Strain Gradient Elasticity Theory for Isotropic Materials
,”
Int. J. Solids Struct.
,
80
, pp.
28
37
.
22.
Cordero
,
N. M.
,
Forest
,
S.
, and
Busso
,
E. P.
,
2016
, “
Second Strain Gradient Elasticity of Nano-Objects
,”
J. Mech. Phys. Solids
,
97
, pp.
92
124
.
23.
Khakalo
,
S.
, and
Niiranen
,
J.
,
2018
, “
Form II of Mindlin’s Second Strain Gradient Theory of Elasticity With a Simplification: For Materials and Structures From Nano- to Macro-Scales
,”
Eur. J. Mech. A/Solids
,
71
, pp.
292
319
.
24.
Bardell
,
N. S.
,
1991
, “
Free Vibration Analysis of a Flat Plate Using the Hierarchical Finite Element Method
,”
J. Sound Vib.
,
151
(
2
), pp.
263
289
.
25.
Numayr
,
K. S.
,
Haddad
,
R. H.
, and
Haddad
,
M. A.
,
2004
, “
Free Vibration of Composite Plates Using the Finite Difference Method
,”
Thin Walled Struct.
,
42
(
3
), pp.
399
414
.
26.
Akhras
,
G.
, and
Li
,
W.
,
2005
, “
Static and Free Vibration Analysis of Composite Plates Using Spline Finite Strips With Higher-Order Shear Deformation
,”
Composites, Part B
,
36
(
6
), pp.
496
503
.
27.
Zhou
,
D.
,
Cheung
,
Y. K.
, and
Kong
,
J.
,
2000
, “
Free Vibration of Thick, Layered Rectangular Plates With Point Supports by Finite Layer Method
,”
Int. J. Solids Struct.
,
37
(
10
), pp.
1483
1499
.
28.
Nardini
,
D.
, and
Brebbia
,
C. A.
,
1983
, “
A New Approach to Free Vibration Analysis Using Boundary Elements
,”
Appl. Math. Model.
,
7
(
3
), pp.
157
162
.
29.
Bui
,
T. Q.
,
Nguyen
,
M. N.
, and
Zhang
,
C.
,
2011
, “
A Meshfree Model Without Shear-Locking for Free Vibration Analysis of First-Order Shear Deformable Plates
,”
Eng. Struct.
,
33
(
12
), pp.
3364
3380
.
30.
Tornabene
,
F.
,
Fantuzzi
,
N.
, and
Bacciocchi
,
M.
,
2018
, “
Strong and Weak Formulations Based on Differential and Integral Quadrature Methods for the Free Vibration Analysis of Composite Plates and Shells: Convergence and Accuracy
,”
Eng. Anal. Boundary Elem.
,
92
, pp.
3
37
.
31.
Civalek
,
Ö
, and
Acar
,
M. H.
,
2007
, “
Discrete Singular Convolution Method for the Analysis of Mindlin Plates on Elastic Foundations
,”
Int. J. Press. Vessels Pip.
,
84
(
9
), pp.
527
535
.
32.
Zhang
,
B.
,
Li
,
H.
,
Kong
,
L.
,
Zhang
,
X.
, and
Shen
,
H.
,
2020
, “
Strain Gradient Differential Quadrature Kirchhoff Plate Finite Element With the C2 Partial Compatibility
,”
Eur. J. Mech. A/Solids
,
80
, p.
103879
.
33.
Zhang
,
B.
,
He
,
Y.
,
Liu
,
D.
,
Gan
,
Z.
, and
Shen
,
L.
,
2013
, “
A Non-Classical Mindlin Plate Finite Element Based on a Modified Couple Stress Theory
,”
Eur. J. Mech. A/Solids
,
42
, pp.
63
80
.
34.
Zhang
,
B.
,
He
,
Y.
,
Liu
,
D.
,
Gan
,
Z.
, and
Shen
,
L.
,
2014
, “
Non-Classical Timoshenko Beam Element Based on the Strain Gradient Elasticity Theory
,”
Finite Elem. Anal. Des.
,
79
, pp.
22
39
.
35.
Ke
,
L.-L.
,
Wang
,
Y.-S.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2012
, “
Free Vibration of Size-Dependent Mindlin Microplates Based on the Modified Couple Stress Theory
,”
J. Sound Vib.
,
331
(
1
), pp.
94
106
.
36.
Kahrobaiyan
,
M. H.
,
Asghari
,
M.
, and
Ahmadian
,
M. T.
,
2013
, “
Strain Gradient Beam Element
,”
Finite Elem. Anal. Des.
,
68
, pp.
63
75
.
37.
Ansari
,
R.
,
Shojaei
,
M. F.
, and
Rouhi
,
H.
,
2015
, “
Small-Scale Timoshenko Beam Element
,”
Eur. J. Mech. A/Solids
,
53
, pp.
19
33
.
38.
Reddy
,
J. N.
,
Romanoff
,
J.
, and
Loya
,
J. A.
,
2016
, “
Nonlinear Finite Element Analysis of Functionally Graded Circular Plates With Modified Couple Stress Theory
,”
Eur. J. Mech. A/Solids
,
56
, pp.
92
104
.
39.
Kwon
,
Y. R.
, and
Lee
,
B. C.
,
2017
, “
A Mixed Element Based on Lagrange Multiplier Method for Modified Couple Stress Theory
,”
Comput. Mech.
,
59
(
1
), pp.
117
128
.
40.
Mirsalehi
,
M.
,
Azhari
,
M.
, and
Amoushahi
,
H.
,
2017
, “
Buckling and Free Vibration of the FGM Thin Micro-Plate Based on the Modified Strain Gradient Theory and the Spline Finite Strip Method
,”
Eur. J. Mech. A/Solids
,
61
, pp.
1
13
.
41.
Niiranen
,
J.
,
Kiendl
,
J.
,
Niemi
,
A. H.
, and
Reali
,
A.
,
2017
, “
Isogeometric Analysis for Sixth-Order Boundary Value Problems of Gradient-Elastic Kirchhoff Plates
,”
Comput. Methods Appl. Mech. Eng.
,
316
, pp.
328
348
.
42.
Choi
,
J.
, and
Lee
,
B.
,
2018
, “
A 3-Node C0 Triangular Element for the Modified Couple Stress Theory Based on the Smoothed Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
114
(
12
), pp.
1245
1261
.
43.
Torabi
,
J.
,
Ansari
,
R.
, and
Darvizeh
,
M.
,
2018
, “
A C1 Continuous Hexahedral Element for Nonlinear Vibration Analysis of Nano-Plates With Circular Cutout Based on 3D Strain Gradient Theory
,”
Compos. Struct.
,
205
, pp.
69
85
.
44.
Torabi
,
J.
,
Ansari
,
R.
, and
Darvizeh
,
M.
,
2019
, “
Application of a Non-Conforming Tetrahedral Element in the Context of the Three-Dimensional Strain Gradient Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
1124
1143
.
45.
Babu
,
B.
, and
Patel
,
B. P.
,
2019
, “
A New Computationally Efficient Finite Element Formulation for Nanoplates Using Second-Order Strain Gradient Kirchhoff’s Plate Theory
,”
Composites, Part B
,
168
, pp.
302
311
.
46.
Karamanli
,
A.
, and
Aydogdu
,
M.
,
2020
, “
Vibration of Functionally Graded Shear and Normal Deformable Porous Microplates via Finite Element Method
,”
Compos. Struct.
,
237
, p.
111934
.
47.
Karamanli
,
A.
,
Aydogdu
,
M.
, and
Vo
,
T. P.
,
2021
, “
A Comprehensive Study on the Size-Dependent Analysis of Strain Gradient Multi-Directional Functionally Graded Microplates via Finite Element Model
,”
Aerosp. Sci. Technol.
,
111
, p.
106550
.
48.
Wu
,
C.-P.
, and
Hsu
,
C.-H.
,
2022
, “
A Three-Dimensional Weak Formulation for Stress, Deformation, and Free Vibration Analyses of Functionally Graded Microscale Plates Based on the Consistent Couple Stress Theory
,”
Compos. Struct.
,
296
, p.
115829
.
49.
Wu
,
H.-P.
,
Shang
,
Y.
,
Cen
,
S.
, and
Li
,
C.-F.
,
2023
, “
Penalty C0 8-Node Quadrilateral and 20-Node Hexahedral Elements for Consistent Couple Stress Elasticity Based on the Unsymmetric Finite Element Method
,”
Eng. Anal. Boundary Elem.
,
147
, pp.
302
319
.
50.
Pham
,
Q. H.
,
Nguyen
,
P. C.
,
Tran
,
V. K.
,
Lieu
,
Q. X.
, and
Tran
,
T. T.
,
2023
, “
Modified Nonlocal Couple Stress Isogeometric Approach for Bending and Free Vibration Analysis of Functionally Graded Nanoplates
,”
Eng. Comput.
,
39
(
1
), pp.
993
1018
.
51.
Bacciocchi
,
M.
,
Fantuzzi
,
N.
,
Luciano
,
R.
, and
Tarantino
,
A. M.
,
2023
, “
Finite Element Solution of Vibrations and Buckling of Laminated Thin Plates in Hygro-Thermal Environment Based on Strain Gradient Theory
,”
Mech. Adv. Mater. Struc.
,
30
(
21
), pp.
4383
4396
.
52.
Thai
,
H.-T.
, and
Choi
,
D.-H.
,
2013
, “
Size-Dependent Functionally Graded Kirchhoff and Mindlin Plate Models Based on a Modified Couple Stress Theory
,”
Compos. Struct.
,
95
, pp.
142
153
.
53.
Akgöz
,
B.
, and
Civalek
,
Ö
,
2015
, “
A Microstructure-Dependent Sinusoidal Plate Model Based on the Strain Gradient Elasticity Theory
,”
Acta Mech.
,
226
(
7
), pp.
2277
2294
.
54.
Darijani
,
H.
, and
Shahdadi
,
A. H.
,
2015
, “
A New Shear Deformation Model With Modified Couple Stress Theory for Microplates
,”
Acta Mech.
,
226
(
8
), pp.
2773
2788
.
55.
Salehipour
,
H.
,
Nahvi
,
H.
, and
Shahidi
,
A. R.
,
2015
, “
Exact Closed-Form Free Vibration Analysis for Functionally Graded Micro/Nano Plates Based on Modified Couple Stress and Three-Dimensional Elasticity Theories
,”
Compos. Struct.
,
124
, pp.
283
291
.
56.
Lou
,
J.
, and
He
,
L.
,
2015
, “
Closed-Form Solutions for Nonlinear Bending and Free Vibration of Functionally Graded Microplates Based on the Modified Couple Stress Theory
,”
Compos. Struct.
,
131
, pp.
810
820
.
57.
Bahreman
,
M.
,
Darijani
,
H.
, and
Bahrani Fard
,
A.
,
2019
, “
The Size-Dependent Analysis of Microplates via a Newly Developed Shear Deformation Theory
,”
Acta Mech.
,
230
(
1
), pp.
49
65
.
58.
Bacciocchi
,
M.
, and
Tarantino
,
A. M.
,
2021
, “
Analytical Solutions for Vibrations and Buckling Analysis of Laminated Composite Nanoplates Based on Third-Order Theory and Strain Gradient Approach
,”
Compos. Struct.
,
272
, p.
114083
.
59.
Jomehzadeh
,
E.
,
Noori
,
H. R.
, and
Saidi
,
A. R.
,
2011
, “
The Size-Dependent Vibration Analysis of Micro-Plates Based on a Modified Couple Stress Theory
,”
Physica E
,
43
(
4
), pp.
877
883
.
60.
Mohammadi
,
M.
, and
Fooladi Mahani
,
M.
,
2015
, “
An Analytical Solution for Buckling Analysis of Size-Dependent Rectangular Micro-Plates According to the Modified Strain Gradient and Couple Stress Theories
,”
Acta Mech.
,
226
(
10
), pp.
3477
3493
.
61.
Liu
,
Y.
, and
Li
,
R.
,
2010
, “
Accurate Bending Analysis of Rectangular Plates With Two Adjacent Edges Free and the Others Clamped or Simply Supported Based on New Symplectic Approach
,”
Appl. Math. Model.
,
34
(
4
), pp.
856
865
.
62.
Hu
,
Z.
,
Yang
,
Y.
,
Zhou
,
C.
,
Zheng
,
X.
, and
Li
,
R.
,
2020
, “
On the Symplectic Superposition Method for New Analytic Free Vibration Solutions of Side-Cracked Rectangular Thin Plates
,”
J. Sound Vib.
,
489
, p.
115695
.
63.
Yao
,
W.
,
Zhong
,
W.
, and
Lim
,
C. W.
,
2009
,
Symplectic Elasticity
,
World Scientific
,
Singapore
.
64.
Lim
,
C. W.
, and
Xu
,
X. S.
,
2011
, “
Symplectic Elasticity: Theory and Applications
,”
ASME Appl. Mech. Rev.
,
63
(
5
), p.
050802
.
65.
Lim
,
C. W.
,
,
C. F.
,
Xiang
,
Y.
, and
Yao
,
W.
,
2009
, “
On New Symplectic Elasticity Approach for Exact Free Vibration Solutions of Rectangular Kirchhoff Plates
,”
Int. J. Eng. Sci.
,
47
(
1
), pp.
131
140
.
66.
Lim
,
C. W.
,
2010
, “
Symplectic Elasticity Approach for Free Vibration of Rectangular Plates
,”
Adv. Vibr. Eng.
,
9
(
2
), pp.
159
163
.
67.
Lim
,
C. W.
,
Cui
,
S.
, and
Yao
,
W.
,
2007
, “
On New Symplectic Elasticity Approach for Exact Bending Solutions of Rectangular Thin Plates With Two Opposite Sides Simply Supported
,”
Int. J. Solids Struct.
,
44
(
16
), pp.
5396
5411
.
68.
Wu
,
Q.
,
Chen
,
L.
, and
Gao
,
Q.
,
2023
, “
Analytical Solution for the Bending Problem of Micropolar Plates Based on the Symplectic Approach
,”
ASME J. Appl. Mech.
,
91
(
2
), p.
021009
.
69.
Zhang
,
T.
,
2017
, “
Symplectic Analysis for Wrinkles: A Case Study of Layered Neo-Hookean Structures
,”
ASME J. Appl. Mech.
,
84
(
7
), p.
071002
.
70.
Sui
,
J.
,
Chen
,
J.
,
Zhang
,
X.
,
Nie
,
G.
, and
Zhang
,
T.
,
2018
, “
Symplectic Analysis of Wrinkles in Elastic Layers With Graded Stiffnesses
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011008
.
71.
Ma
,
Y.
,
Zhang
,
Y.
, and
Kennedy
,
D.
,
2015
, “
A Symplectic Analytical Wave Based Method for the Wave Propagation and Steady State Forced Vibration of Rectangular Thin Plates
,”
J. Sound Vib.
,
339
, pp.
196
214
.
72.
Xu
,
X. S.
,
Zhou
,
Z. H.
, and
Leung
,
A. Y. T.
,
2010
, “
Analytical Stress Intensity Factors for Edge-Cracked Cylinder
,”
Int. J. Mech. Sci.
,
52
(
7
), pp.
892
903
.
73.
Zhou
,
Z. H.
,
Yu
,
X.
,
Yang
,
Z.
,
Xu
,
W.
,
Lim
,
C. W.
, and
Xu
,
X. S.
,
2019
, “
An Isogeometric-Symplectic Coupling Approach for Fracture Analysis of Magnetoelectroelastic Bimaterials With Crack Terminating at the Interface
,”
Eng. Fract. Mech.
,
216
, p.
106510
.
74.
Han
,
S.
, and
Bauchau
,
O.
,
2016
, “
On the Analysis of Periodically Heterogenous Beams
,”
ASME J. Appl. Mech.
,
83
(
9
), p.
091001
.
75.
Hu
,
W.
,
Ye
,
J.
, and
Deng
,
Z.
,
2020
, “
Internal Resonance of a Flexible Beam in a Spatial Tethered System
,”
J. Sound Vib.
,
475
, p.
115286
.
76.
Feng
,
K.
,
1986
, “
Difference Schemes for Hamiltonian Formalism and Symplectic Geometry
,”
J. Comput. Math.
,
4
(
3
), pp.
279
289
.
77.
Feng
,
K.
, and
Qin
,
M.-Z.
,
1991
, “
Hamiltonian Algorithms for Hamiltonian Systems and a Comparative Numerical Study
,”
Comput. Phys. Commun.
,
65
(
1–3
), pp.
173
187
.
78.
Zhong
,
W.
, and
Williams
,
F. W.
,
1993
, “
Physical Interpretation of the Symplectic Orthogonality of the Eigensolutions of a Hamiltonian or Symplectic Matrix
,”
Comput. Struct.
,
49
(
4
), pp.
749
750
.
79.
Ouyang
,
H.
, and
Zhong
,
W.
,
1994
, “
A Finite Strip Method in Hamiltonian Formulation
,”
Comput. Struct.
,
53
(
2
), pp.
241
244
.
80.
Xiang
,
W.
,
Ni
,
H.
,
Wu
,
Y.
, and
Liu
,
B.
,
2023
, “
New Closed-Form Solutions for Flexural Vibration of Microplates Based on a Modified Strain Gradient Theory
,”
Thin Walled Struct.
,
185
, p.
110558
.
81.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2011
, “
A Size-Dependent Kirchhoff Micro-Plate Model Based on Strain Gradient Elasticity Theory
,”
Eur. J. Mech. A/Solids
,
30
(
4
), pp.
517
524
.
82.
Hu
,
Z.
,
Zheng
,
X.
,
An
,
D.
,
Zhou
,
C.
,
Yang
,
Y.
, and
Li
,
R.
,
2021
, “
New Analytic Buckling Solutions of Side-Cracked Rectangular Thin Plates by the Symplectic Superposition Method
,”
Int. J. Mech. Sci.
,
191
, p.
106051
.
83.
Hu
,
Z.
,
Shi
,
Y.
,
Xiong
,
S.
,
Zheng
,
X.
, and
Li
,
R.
,
2023
, “
New Analytic Free Vibration Solutions of Non-Lévy-Type Porous FGM Rectangular Plates Within the Symplectic Framework
,”
Thin Walled Struct.
,
185
, p.
110609
.
84.
Hu
,
Z.
,
Zhou
,
C.
,
Ni
,
Z.
,
Zheng
,
X.
,
Wang
,
Z.
,
Xu
,
D.
,
Wang
,
B.
, and
Li
,
R.
,
2023
, “
New Analytical Solutions for Elastoplastic Buckling of Non-Lévy-Type Rectangular Plates
,”
AIAA J.
,
61
(
11
), pp.
5147
5163
.
85.
Wang
,
B.
,
Li
,
P.
, and
Li
,
R.
,
2016
, “
Symplectic Superposition Method for New Analytic Buckling Solutions of Rectangular Thin Plates
,”
Int. J. Mech. Sci.
,
119
, pp.
432
441
.
86.
Thai
,
C. H.
,
Ferreira
,
A. J. M.
, and
Phung-Van
,
P.
,
2019
, “
Size Dependent Free Vibration Analysis of Multilayer Functionally Graded GPLRC Microplates Based on Modified Strain Gradient Theory
,”
Composites, Part B
,
169
, pp.
174
188
.
You do not currently have access to this content.