Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Motivated by the recent discoveries concerning the exceptional surface engineering capabilities offered by high-entropy alloys (HEAs), this article investigates the tribological behavior of pristine and graphene nano-engineered AlxCoCrFeNi HEA. The atomic-scale scratching is performed for different configurations of HEA in a molecular dynamics environment, wherein, at first, aluminum (Al) (x = 0.1, 0.3, and 0.5) concentration-dependent wear behavior of HEA configurations is compared. It is observed that with the increase in Al concentration, the normal and tangential forces, friction coefficients, and wear-rates were significantly reduced, due to the increased plastic deformation and phase transformation. Graphene-engineered HEA surfaces are perceived in two different ways, in the presented investigation: first, the graphene coating is applied directly over the HEA surface, and second, the graphene layers are embedded at a certain depth below the target surface. It is observed that graphene-engineered HEA surfaces exhibit exceptional performance against nano-scratching, wherein, the distribution and height of surface morphology (pile-ups) have seen significant improvement and elastic recovery, especially in the cases of graphene coating over the surface. The findings obtained from this study will be extremely helpful in bringing the bottom-up multi-scale design route for graphene-engineered HEA surfaces to reality. This will enable the development of a novel class of functionally engineered surfaces with enhanced wear and scratch resistance.

References

1.
Yeh
,
J. W.
,
Chen
,
S. K.
,
Lin
,
S. J.
,
Gan
,
J. Y.
,
Chin
,
T. S.
,
Shun
,
T. T.
,
Tsau
,
C. H.
, and
Chang
,
S. Y.
,
2004
, “
Nanostructured High-Entropy Alloys With Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes
,”
Adv. Eng. Mater.
,
6
(
5
), pp.
299
303
.
2.
Tokarewicz
,
M.
, and
Grądzka-Dahlke
,
M.
,
2021
, “
Review of Recent Research on AlCoCrFeNi High-Entropy Alloy
,”
Metals
,
11
(
8
), p.
1302
.
3.
Yeh
,
J. W.
,
2006
, “
Recent Progress in High Entropy Alloys
,”
Ann. Chim. Sci. Mat.
,
31
(
6
), pp.
633
648
.
4.
Yeh
,
J. W.
,
2013
, “
Alloy Design Strategies and Future Trends in High-Entropy Alloys
,”
JOM
,
65
(
12
), pp.
1759
1771
.
5.
Liu
,
S.
,
Gao
,
M. C.
,
Liaw
,
P. K.
, and
Zhang
,
Y.
,
2015
, “
Microstructures and Mechanical Properties of AlxCrFeNiTi0.25 Alloys
,”
J. Alloys Compd.
,
619
, pp.
610
615
.
6.
Stepanov
,
N. D.
,
Shaysultanov
,
D. G.
,
Salishchev
,
G. A.
, and
Tikhonovsky
,
M. A.
,
2015
, “
Structure and Mechanical Properties of a Lightweight AlNbTiV High Entropy Alloy
,”
Mater. Lett.
,
142
, pp.
153
155
.
7.
Stepanov
,
N. D.
,
Yurchenko
,
N. Y.
,
Skibin
,
D. V.
,
Tikhonovsky
,
M. A.
, and
Salishchev
,
G. A.
,
2015
, “
Structure and Mechanical Properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) High Entropy Alloys
,”
J. Alloys Compd.
,
652
, pp.
266
280
.
8.
Senkov
,
O. N.
,
Woodward
,
C.
, and
Miracle
,
D. B.
,
2014
, “
Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys
,”
JOM
,
66
(
10
), pp.
2030
2042
.
9.
Zou
,
Y.
,
Maiti
,
S.
,
Steurer
,
W.
, and
Spolenak
,
R.
,
2014
, “
Size-Dependent Plasticity in an Nb25Mo25Ta25W25 Refractory High-Entropy Alloy
,”
Acta Mater.
,
65
, pp.
85
97
.
10.
Wang
,
Y.
,
Yang
,
Y.
,
Yang
,
H.
,
Zhang
,
M.
,
Ma
,
S.
, and
Qiao
,
J.
,
2018
, “
Microstructure and Wear Properties of NitridedAlCoCrFeNi High-Entropy Alloy
,”
Mater. Chem. Phys.
,
210
, pp.
233
239
.
11.
Dada
,
M.
,
Popoola
,
P.
,
Adeosun
,
S.
, and
Mathe
,
N.
,
2019
,
Aerodynamics
,
IntechOpen
,
London, UK
.
12.
Vikram
,
R. J.
,
Gaddam
,
S.
,
Kalsar
,
R.
,
Acharya
,
S.
, and
Suwas
,
S.
,
2019
, “
A Fractal Approach to Predict the Oxidation and Corrosion Behaviour of a Grain Boundary Engineered Low SFE High Entropy Alloy
,”
Materialia
,
7
, p.
100398
.
13.
Han
,
C.
,
Fang
,
Q.
,
Shi
,
Y.
,
Tor
,
S. B.
,
Chua
,
C. K.
, and
Zhou
,
K.
,
2020
, “
Recent Advances on High-Entropy Alloys for 3D Printing
,”
Adv. Mater.
,
32
(
26
), p.
1903855
.
14.
Chikumba
,
S.
, and
Rao
,
V. V.
,
2015
, “
High Entropy Alloys: Development and Applications
,”
Proceedings of the 7th International Conference on Latest Trends in Engineering & Technology (ICLTET’2015)
,
Pretoria, South Africa
,
Nov. 26–27
, pp.
1
5
.
15.
Senkov
,
O. N.
,
Miracle
,
D. B.
,
Chaput
,
K. J.
, and
Couzinie
,
J. P.
,
2018
, “
Development and Exploration of Refractory High Entropy Alloys – A Review
,”
J. Mater. Res.
,
33
(
19
), pp.
3092
3128
.
16.
Praveen
,
S.
, and
Kim
,
H. S.
,
2018
, “
High-Entropy Alloys: Potential Candidates for High-Temperature Applications–An Overview
,”
Adv. Eng. Mater.
,
20
(
1
), p.
1700645
.
17.
Gludovatz
,
B.
,
Hohenwarter
,
A.
,
Catoor
,
D.
,
Chang
,
E. H.
,
George
,
E. P.
, and
Ritchie
,
R. O.
,
2014
, “
A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications
,”
Science
,
345
(
6201
), pp.
1153
1158
.
18.
Alvi
,
S.
,
Jarzabek
,
D. M.
,
Kohan
,
M. G.
,
Hedman
,
D.
,
Jenczyk
,
P.
,
Natile
,
M. M.
,
Vomiero
,
A.
, and
Akhtar
,
F.
,
2020
, “
Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering
,”
ACS Appl. Mater. Interfaces
,
12
(
18
), pp.
21070
21079
.
19.
Anupam
,
A.
,
Kumar
,
S.
,
Chavan
,
N. M.
,
Murty
,
B. S.
, and
Kottada
,
R. S.
,
2019
, “
First Report on Cold-Sprayed AlCoCrFeNi High-Entropy Alloy and Its Isothermal Oxidation
,”
J. Mater. Res.
,
34
(
5
), pp.
796
806
.
20.
Wang
,
R.
,
Zhang
,
K.
,
Davies
,
C.
, and
Wu
,
X.
,
2017
, “
Evolution of Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Direct Laser Fabrication
,”
J. Alloys Compd.
,
694
, pp.
971
981
.
21.
Tang
,
Z.
,
Gao
,
M. C.
,
Diao
,
H.
,
Yang
,
T.
,
Liu
,
J.
,
Zuo
,
T.
,
Zhang
,
Y.
, et al
,
2013
, “
Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems
,”
JOM
,
65
(
12
), pp.
1848
1858
.
22.
Tong
,
C. J.
,
Chen
,
Y. L.
,
Yeh
,
J. W.
, et al
,
2005
, “
Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System With Multiprincipal Elements
,”
Metall. Mater. Trans.
,
36
(
4
), pp.
881
893
.
23.
Wang
,
W. R.
,
Wang
,
W. L.
, and
Yeh
,
J. W.
,
2014
, “
Phases, Microstructure and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloys at Elevated Temperatures
,”
J. Alloys Compd.
,
589
, pp.
143
152
.
24.
Song
,
X. T.
,
Shi
,
X. H.
,
Xia
,
Z. H.
,
Yang
,
H. J.
,
Wu
,
Y. C.
,
Liaw
,
P. K.
, and
Qiao
,
J. W.
,
2019
, “
Effects of NiP Coating on Mechanical Properties of Al0.3CoCrFeNi High-Entropy Alloys
,”
Mater. Sci. Eng. A
,
752
, pp.
152
159
.
25.
Liao
,
W. B.
,
Zhang
,
H.
,
Liu
,
Z. Y.
,
Li
,
P. F.
,
Huang
,
J. J.
,
Yu
,
C. Y.
, and
Lu
,
Y.
,
2019
, “
High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering
,”
Entropy
,
21
(
2
), p.
146
.
26.
Meghwal
,
A.
,
Anupam
,
A.
,
Luzin
,
V.
,
Schulz
,
C.
,
Hall
,
C.
,
Murty
,
B. S.
,
Kottada
,
R. S.
,
Berndt
,
C. C.
, and
Ang
,
A. S. M.
,
2021
, “
Multiscale Mechanical Performance and Corrosion Behaviour of Plasma Sprayed AlCoCrFeNi High-Entropy Alloy Coatings
,”
J. Alloys Compd.
,
854
, p.
157140
.
27.
Meghwal
,
A.
,
Singh
,
S.
,
Anupam
,
A.
,
King
,
H. J.
,
Schulz
,
C.
,
Hall
,
C.
,
Munroe
,
P.
,
Berndt
,
C. C.
, and
Ang
,
A. S. M.
,
2022
, “
Nano-and Micro-Mechanical Properties and Corrosion Performance of a HVOF Sprayed AlCoCrFeNi High-Entropy Alloy Coating
,”
J. Alloys Compd.
,
912
, p.
165000
.
28.
Zhang
,
M. N.
,
Zhou
,
X. L.
,
Zhu
,
W. Z.
, and
Li
,
J. H.
,
2017
, “
Microstructure and Mechanical Behavior of AlCoCuFeNi High-Entropy Alloy Fabricated by Selective Laser Melting
,”
2017 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 7–9
.
29.
Gupta
,
K. K.
,
Barman
,
S.
,
Dey
,
S.
, and
Mukhopadhyay
,
T.
,
2024
, “
Explainable Machine Learning Assisted Molecular-Level Insights for Enhanced Specific Stiffness Exploiting the Large Compositional Space of AlCoCrFeNi High Entropy Alloys
,”
Mach. Learn.: Sci. Technol.
,
5
(2), p.
025082
.
30.
Joseph
,
J.
,
Stanford
,
N.
,
Hodgson
,
P.
, and
Fabijanic
,
D. M.
,
2017
, “
Understanding the Mechanical Behaviour and the Large Strength/Ductility Differences Between FCC and BCC AlxCoCrFeNi High Entropy Alloys
,”
J. Alloys Compd.
,
726
, pp.
885
895
.
31.
Kong
,
J.
,
Luo
,
G.
,
Tian
,
Y.
, and
Du
,
C.
,
2023
, “
Atomic Insight Into Tribological Behavior of AlCoCrFeNi High Entropy Alloy at Various Nanoscratching Conditions
,”
J. Mater. Res. Technol.
,
27
, pp.
7293
7303
.
32.
Yu
,
Y.
,
Wang
,
J.
,
Li
,
J.
,
Yang
,
J.
,
Kou
,
H.
, and
Liu
,
W.
,
2016
, “
Tribological Behavior of AlCoCrFeNi (Ti0.5) High Entropy Alloys Under Oil and MACs Lubrication
,”
J. Mater. Sci. Technol.
,
32
(
5
), pp.
470
476
.
33.
Jin
,
B.
,
Zhang
,
N.
,
Yu
,
H.
,
Hao
,
D.
, and
Ma
,
Y.
,
2020
, “
AlxCoCrFeNiSi High Entropy Alloy Coatings With High Microhardness and Improved Wear Resistance
,”
Surf. Coat. Technol.
,
402
, p.
126328
.
34.
Cheng
,
H.
,
Fang
,
Y.
,
Xu
,
J.
,
Zhu
,
C.
,
Dai
,
P.
, and
Xue
,
S.
,
2020
, “
Tribological Properties of Nano/Ultrafine-Grained FeCoCrNiMnAlx High-Entropy Alloys Over a Wide Range of Temperatures
,”
J. Alloys Compd.
,
817
, p.
153305
.
35.
Yu
,
Y.
,
Wang
,
J.
,
Yang
,
J.
,
Qiao
,
Z.
,
Duan
,
H.
,
Li
,
J.
,
Li
,
J.
, and
Liu
,
W.
,
2019
, “
Corrosive and Tribological Behaviors of AlCoCrFeNi-M High Entropy Alloys Under 90 wt% H2O2 Solution
,”
Tribol. Int.
,
131
, pp.
24
32
.
36.
Xing
,
X.
,
Liu
,
Y.
,
Hu
,
J.
, and
Li
,
W.
,
2022
, “
Effect of Al Content on Microstructure and Wear Properties of FeCrNiMnAlx High-Entropy Alloys
,”
Mater. Res. Express
,
9
(
3
), p.
036510
.
37.
Shi
,
P.
,
Yu
,
Y.
,
Xiong
,
N.
,
Liu
,
M.
,
Qiao
,
Z.
,
Yi
,
G.
,
Yao
,
Q.
,
Zhao
,
G.
,
Xie
,
E.
, and
Wang
,
Q.
,
2020
, “
Microstructure and Tribological Behavior of a Novel Atmospheric Plasma Sprayed AlCoCrFeNi High Entropy Alloy Matrix Self-Lubricating Composite Coatings
,”
Tribol. Int.
,
151
, p.
106470
.
38.
Du
,
L. M.
,
Lan
,
L. W.
,
Zhu
,
S.
,
Yang
,
H. J.
,
Shi
,
X. H.
,
Liaw
,
P. K.
, and
Qiao
,
J. W.
,
2019
, “
Effects of Temperature on the Tribological Behavior of Al0.25CoCrFeNi High-Entropy Alloy
,”
J. Mater. Sci. Technol.
,
35
(
5
), pp.
917
925
.
39.
Gupta
,
K. K.
,
Mukhopadhyay
,
T.
, and
Dey
,
S.
,
2023
, “
Probing the Molecular-Level Energy Absorption Mechanism and Strategic Sequencing of Graphene/Al Composite Laminates Under High-Velocity Ballistic Impact of Nano-Projectiles
,”
Appl. Surf. Sci.
,
629
, p.
156502
.
40.
Zhang
,
X.
,
Xu
,
Y.
,
Wang
,
M.
,
Liu
,
E.
,
Zhao
,
N.
,
Shi
,
C.
,
Lin
,
D.
,
Zhu
,
F.
, and
He
,
C.
,
2020
, “
A Powder-Metallurgy-Based Strategy Toward Three-Dimensional Graphene-Like Network for Reinforcing Copper Matrix Composites
,”
Nat. Commun.
,
11
(
1
), p.
2775
.
41.
Luo
,
T.
,
Zhang
,
H.
,
Liu
,
R.
,
Du
,
P.
,
Huang
,
Z.
,
Pan
,
Q.
,
Liao
,
Z.
, and
Xu
,
Y.
,
2021
, “
Mechanical and Damping Properties of the Multi-layer Graphenes Enhanced CrMnFeCoNi High-Entropy Alloy Composites Produced by Powder Metallurgy
,”
Mater. Lett.
,
293
, p.
129682
.
42.
Zhang
,
W.
,
Ma
,
Z.
,
Liu
,
D.
,
Xiong
,
J.
,
Zhao
,
H.
, and
Ren
,
L.
,
2022
, “
Enhanced Surface Properties of a Graphene Oxide Reinforced High-Entropy Alloy Composite Prepared by Spark Plasma Sintering
,”
Nanoscale
,
14
(
18
), pp.
6777
6788
.
43.
Liu
,
X.
,
Zhang
,
L.
, and
Xu
,
Y.
,
2017
, “
Microstructure and Mechanical Properties of Graphene Reinforced Fe50 Mn30 Co10 Cr10 High-Entropy Alloy Composites Synthesized by MA and SPS
,”
Appl. Phys. A
,
123
(
1
), pp.
1
7
.
44.
Dewapriya
,
M. A. N.
, and
Miller
,
R. E.
,
2021
, “
Molecular Dynamics Simulations of Shock Propagation and Spallation in Amorphous Polymers
,”
ASME J. Appl. Mech.
,
88
(
10
), p.
101005
.
45.
Gupta
,
K. K.
,
Roy
,
L.
, and
Dey
,
S.
,
2022
, “
Hybrid Machine-Learning-Assisted Stochastic Nano-Indentation Behaviour of Twisted Bilayer Graphene
,”
J. Phys. Chem. Solids
,
167
, p.
110711
.
46.
Gupta
,
K. K.
,
Mukhopadhyay
,
T.
,
Roy
,
L.
, and
Dey
,
S.
,
2022
, “
High-Velocity Ballistics of Twisted Bilayer Graphene Under Stochastic Disorder
,”
Adv. Nano Res.
,
12
(
5
), pp.
529
547
.
47.
Qin
,
Z.
,
Xu
,
Z.
, and
Buehler
,
M. J.
,
2015
, “
Peeling Silicene From Model Silver Substrates in Molecular Dynamics Simulations
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101003
.
48.
Barman
,
S.
, and
Dey
,
S.
,
2023
, “
Probing the Mechanical and Deformation Behaviour of CNT-Reinforced AlCoCrFeNi High-Entropy Alloy–A Molecular Dynamics Approach
,”
Mol. Simul.
,
49
(
18
), pp.
1726
1741
.
49.
Dewapriya
,
M. A. N.
, and
Miller
,
R. E.
,
2020
, “
Superior Dynamic Penetration Resistance of Nanoscale Multilayer Polymer/Metal Films
,”
ASME J. Appl. Mech.
,
87
(
12
), p.
121009
.
50.
Barman
,
S.
,
Gupta
,
K. K.
, and
Dey
,
S.
,
2024
, “
Enhancing Mechanical Performance of Al0.3CoCrFeNi HEA Films Through Graphene Coating: Insights From Nanoindentation and Dislocation Mechanism Analysis
,”
Modell. Simul. Mater. Sci. Eng.
,
32
(
3
), p.
035012
.
51.
Barman
,
S.
,
Gupta
,
K. K.
, and
Dey
,
S.
,
2024
, “
Probing Atomistic Deformation Behavior of Graphene-Coated Al0.3CoCrFeNi High-Entropy Alloy Under Nanoindentation
,”
J. Micromech. Mol. Phys.
, pp.
1
14
.
52.
He
,
X.
,
Bai
,
Q.
, and
Shen
,
R.
,
2018
, “
Atomistic Perspective of How Graphene Protects Metal Substrate From Surface Damage in Rough Contacts
,”
Carbon
,
130
, pp.
672
679
.
53.
Liu
,
R.
,
Tang
,
J.
,
Jiang
,
J.
,
Li
,
X.
, and
Wei
,
Y.
,
2022
, “
Stacking Fault Induced Hardening and Grain Size Effect in Nanocrystalline CoNiCrFeMn High-Entropy Alloy
,”
Extreme Mech. Lett.
,
56
, p.
101875
.
54.
Doan
,
D. Q.
,
Nguyen
,
V. H.
,
Tran
,
T. V.
, and
Hoang
,
M. T.
,
2023
, “
Atomic-Scale Analysis of Mechanical and Wear Characteristics of AlCoCrFeNi High Entropy Alloy Coating on Ni Substrate
,”
J. Manuf. Process.
,
85
, pp.
1010
1023
.
55.
Doan
,
D. Q.
,
Fang
,
T. H.
, and
Chen
,
T. H.
,
2022
, “
Structural Transformation and Strain Localization at Twin Boundaries in Al0.4CoCrFeNi High-Entropy Alloy
,”
Appl. Surf. Sci.
,
582
, p.
152383
.
56.
Wang
,
P.
,
Wu
,
Y.
,
Liu
,
J.
, and
Wang
,
H.
,
2017
, “
Impacts of Atomic Scale Lattice Distortion on Dislocation Activity in High-Entropy Alloys
,”
Extreme Mech. Lett.
,
17
, pp.
38
42
.
57.
Gao
,
T.
,
Mao
,
S.
,
Li
,
L.
,
Zhang
,
Z.
,
Chen
,
Q.
, and
Xie
,
Q.
,
2023
, “
Effect of Graphene on the Surface Nanomechanical Behavior and Subsurface Layer of GaN Damage During Nanogrinding Using Molecular Dynamics Simulation
,”
Micro Nanostruct.
,
184
, p.
207694
.
58.
Li
,
S.
,
Ye
,
W. T.
,
Shi
,
Y. R.
,
Zhou
,
Q.
,
Chen
,
Y. N.
,
Guo
,
T.
,
Liu
,
Y. X.
,
Zhang
,
L. C.
, and
Wang
,
H. F.
,
2023
, “
Atomistic Simulation and Experimental Verification of Tribological Behavior of High Entropy Alloy/Graphene Composite Coatings
,”
Surf. Coat. Technol.
,
467
, p.
129683
.
59.
Xie
,
H.
,
Ma
,
Z.
,
Zhang
,
W.
,
Zhao
,
H.
, and
Ren
,
L.
,
2022
, “
Strengthening Effect of High-Entropy Alloys Endowed by Monolayer Graphene
,”
Mater. Today Phys.
,
27
, p.
100800
.
60.
Wang
,
Z.
,
Li
,
J.
,
Fang
,
Q.
,
Liu
,
B.
, and
Zhang
,
L.
,
2017
, “
Investigation Into Nanoscratching Mechanical Response of AlCrCuFeNi High-Entropy Alloys Using Atomic Simulations
,”
Appl. Surf. Sci.
,
416
, pp.
470
481
.
61.
Remington
,
T. P.
,
Ruestes
,
C. J.
,
Bringa
,
E. M.
,
Remington
,
B. A.
,
Lu
,
C. H.
,
Kad
,
B.
, and
Meyers
,
M. A.
,
2014
, “
Plastic Deformation in Nanoindentation of Tantalum: A New Mechanism for Prismatic Loop Formation
,”
Acta Mater.
,
78
, pp.
378
393
.
62.
Ruestes
,
C. J.
,
Bringa
,
E. M.
,
Gao
,
Y.
, and
Urbassek
,
H. M.
,
2017
, “
Molecular Dynamics Modelling of Nanoindentation
,”
Appl. Nanoindent. Adv. Mater.
, pp.
313
345
.
63.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
In't Veld
,
P. J.
, et al
,
2022
, “
LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modelling at the Atomic, Meso, and Continuum Scales
,”
Comput. Phys. Commun.
,
271
, p.
108171
.
64.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graph.
,
14
(
1
), pp.
33
38
.
65.
Farkas
,
D.
, and
Caro
,
A.
,
2020
, “
Model Interatomic Potentials for Fe–Ni–Cr–Co–Al High-Entropy Alloys
,”
J. Mater. Res.
,
35
(
22
), pp.
3031
3040
.
66.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
67.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
68.
Jiang
,
J.
,
Chen
,
P.
,
Qiu
,
J.
,
Sun
,
W.
,
Saikov
,
I.
,
Shcherbakov
,
V.
, and
Alymov
,
M.
,
2021
, “
Microstructural Evolution and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloys Under Uniaxial Tension: A Molecular Dynamics Simulations Study
,”
Mater. Today Commun.
,
28
, p.
102525
.
69.
Yuan
,
L.
,
Tao
,
R.
,
Wen
,
P.
,
Li
,
J.
,
Wang
,
S.
, and
Li
,
D.
,
2023
, “
Molecular Dynamics Simulation of Chemical Short-Range Order Strengthening in FCC FeNiCrCoAlx Alloys
,”
Phys. B
,
649
, p.
414447
.
70.
Li
,
Y.
, and
Shi
,
Y.
,
2021
, “
Microhardness, Wear Resistance, and Corrosion Resistance of AlxCrFeCoNiCu High-Entropy Alloy Coatings on Aluminum by Laser Cladding
,”
Opt. Laser Technol.
,
134
, p.
106632
.
71.
Gasan
,
H.
,
Lökçü
,
E.
,
Ozcan
,
A.
,
Celik
,
O. N.
,
Celikyurek
,
I.
,
Ulutan
,
M.
, and
Kurtulus
,
Y.
,
2020
, “
Effects of Al on the Phase Volume Fractions and Wear Properties in the AlxCoCrFeMoNi High Entropy Alloy System
,”
Met. Mater. Int.
,
26
(
3
), pp.
310
320
.
72.
Stukowski
,
A.
,
Bulatov
,
V. V.
, and
Arsenlis
,
A.
,
2012
, “
Automated Identification and Indexing of Dislocations in Crystal Interfaces
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
8
), p.
085007
.
73.
Varillas
,
J.
,
Očenášek
,
J.
,
Torner
,
J.
, and
Alcalá
,
J.
,
2021
, “
Understanding Imprint Formation, Plastic Instabilities and Hardness Evolutions in FCC, BCC and HCP Metal Surfaces
,”
Acta Mater.
,
217
, p.
117122
.
74.
Wang
,
W.
,
Hua
,
D.
,
Luo
,
D.
,
Zhou
,
Q.
,
Li
,
S.
,
Shi
,
J.
, and
Wang
,
H.
,
2022
, “
Molecular Dynamics Simulation of Deformation Mechanism of CoCrNi Medium Entropy Alloy During Nanoscratching
,”
Comput. Mater. Sci.
,
203
, p.
111085
.
75.
Kim
,
D. J.
,
Truong
,
Q. T.
,
Kim
,
J. I.
,
Suh
,
Y.
,
Moon
,
J.
,
Lee
,
S. E.
,
Hong
,
B. H.
, and
Woo
,
Y. S.
,
2021
, “
Ultrahigh-Strength Multi-layer Graphene-Coated Ni Film With Interface-Induced Hardening
,”
Carbon
,
178
, pp.
497
505
.
76.
Xie
,
H.
,
Ma
,
Z.
,
Zhao
,
H.
, and
Ren
,
L.
,
2022
, “
Atomic Perspective of Contact Protection in Graphene-Coated High-Entropy Films
,”
Tribol. Int.
,
174
, p.
107748
.
77.
Roy
,
A.
,
Gupta
,
K. K.
, and
Dey
,
S.
,
2022
, “
Probabilistic Investigation of Temperature-Dependent Vibrational Behavior of Hetero-Nanotubes
,”
Appl. Nanosci.
,
12
(
7
), pp.
2077
2089
.
78.
Gupta
,
K. K.
,
Roy
,
A.
, and
Dey
,
S.
,
2020
, “
Comparative Study of Various Defects in Monolayer Graphene Using Molecular Dynamics Simulation
,”
Advances in Applied Mechanical Engineering: Select Proceedings of ICAMER 2019
,
Tamil Nadu
,
Apr. 5–6
, Springer, Singapore, pp.
539
546
.
You do not currently have access to this content.