Abstract

The misfit stress in a thin layer embedded in a semi-infinite matrix has been first determined near the free surface of the structure, using the virtual dislocation formalism. From a Peach–Koehler force analysis, the different equilibrium positions (unstable and stable) of an edge dislocation gliding in a plane of the layer inclined with respect to the upper interface and emerging at the point of intersection of the upper interface and this free surface have been then characterized with respect to the lattice mismatch and the inclination angle of the gliding plane. It has been found that the dislocation may exhibit stable equilibrium position near the interface and/or near the free surface. A diagram of the position stability has been then determined versus the misfit parameter and the inclination angle. The energy variation due to the introduction of an edge dislocation from the free surface until the matrix layer interface has been finally determined, when the dislocation is gliding in the plane inclined with respect to the interface horizontal axis. A critical thickness of the layer beyond which the formation of the dislocation in the interfaces is energetically favorable has been finally determined as well as its position with respect to the free surface in the lower interface.

References

1.
Freund
,
L.
, and
Suresh
,
S.
,
2003
,
Thin Film Materials
,
Cambridge University Press
,
Cambridge
.
2.
Chen
,
K.
,
Dai
,
Q.
,
Lee
,
W.
,
Kim
,
J.
,
Schubert
,
E.
,
Grandusky
,
J.
,
Mendrick
,
M.
,
Li
,
X.
, and
Smart
,
J.
,
2008
, “
Effect of Dislocations on Electrical and Optical Properties of N- Type Al0.34Ga0.66N
,”
Appl. Phys. Lett.
,
93
(
19
), p.
192108
.
3.
Luo
,
H.
,
Li
,
J.
,
Yang
,
G.
,
Zhu
,
R.
,
Zhang
,
Y.
,
Wang
,
R.
,
Yang
,
D.
, and
Pi
,
X.
,
2022
, “
Electronic and Optical Properties of Threading Dislocations in N-Type 4H-SiC
,”
Appl. Electron. Mater.
,
4
(
4
), pp.
1678
1683
.
4.
Mattews
,
J.
, and
Blakeslee
,
A.
,
1974
, “
Defects in Epitaxial Multilayers I. Misfit Dislocations
,”
J. Cryst. Growth
,
27
(
1
), pp.
118
125
.
5.
Gutkin
,
M. Y.
, and
Romanov
,
A.
,
1991
, “
Straight Edge Dislocation in a Thin Two-Phase Plate I. Elastic Stress Fields
,”
Phys. Stat. Sol. (a)
,
125
(
1
), pp.
107
125
.
6.
Gutkin
,
M. Y.
, and
Romanov
,
A.
,
1992
, “
Straight Edge Dislocation in a Thin Two-Phase Plate, II. Impurity-Vacancy Polarization of Plate, Interaction of a Dislocation With Interface and Free Surfaces
,”
Phys. Stat. Sol. (a)
,
129
(
2
), pp.
363
377
.
7.
Gutkin
,
M. Y.
, and
Romanov
,
A.
,
1992
, “
Misfit Dislocations in a Thin Two-Phase Heteroepitaxial Plate
,”
Phys. Stat. Sol. (a)
,
129
(
1
), pp.
117
126
.
8.
Freund
,
L.
,
1987
, “
The Stability of a Dislocation Threading a Strained Layer on a Substrate
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
553
557
.
9.
Hu
,
S.
,
1991
, “
Misfit Dislocations and Critical Thickness of Heteroepitaxy
,”
J. Appl. Phys.
,
69
(
11
), pp.
7901
7903
.
10.
Zhou
,
K.
, and
Wu
,
M.
,
2010
, “
Elastic Fields Due to an Edge Dislocation in an Isotropic Film-Substrate by the Image Method
,”
Acta Mech.
,
211
(
3-4
), pp.
271
292
.
11.
Weeks
,
R.
,
Dundurs
,
J.
, and
Stippes
,
M.
,
1968
, “
Exact Analysis of an Edge Dislocation Near a Surface Layer
,”
Int. J. Engng Sci.
,
6
(
7
), pp.
365
372
.
12.
Lee
,
M.-S.
, and
Dundurs
,
J.
,
1973
, “
Edge Dislocation in a Surface Layer
,”
Int. J. Engng Sci.
,
11
(
1
), pp.
87
94
.
13.
Li
,
J.
,
Liu
,
Y.
, and
Wen
,
P.
,
2014
, “
An Edge Dislocation Interacting With an Elastic Thin-Layered Semi-Infinite Matrix
,”
Math. Mech. Sol.
,
19
(
6
), pp.
626
639
.
14.
Lubarda
,
V.
,
2018
, “
Equilibrium Position of Screw Dislocation Near Circular Inhomogeneity at the Tip of an Elastic Wedge
,”
Meccanica
,
53
(
1-2
), pp.
229
239
.
15.
Jiang
,
C.
,
Chai
,
H.
,
Yan
,
P.
, and
Song
,
F.
,
2014
, “
The Interaction of a Screw Dislocation With a Circular Inhomogeneity Near the Free Surface
,”
Arch. Appl. Mech.
,
84
(
3
), pp.
343
353
.
16.
Gutkin
,
M.
,
Ovid’ko
,
I.
, and
Sheinerman
,
A.
,
2003
, “
Misfit Dislocations in Composites With Nanowires
,”
J. Phys.: Cond. Matter.
,
15
(
21
), pp.
3539
3554
.
17.
Mikaelyan
,
K.
,
Gutkin
,
M.
,
Borodin
,
E.
, and
Romanov
,
A.
,
2019
, “
Dislocation Emission From the Edge of a Misfitting Nanowire Embedded in a Free-Standing Nanolayer
,”
Int. J. Solids Struct.
,
161
, pp.
127
135
.
18.
Colin
,
J.
,
Junqua
,
N.
, and
Grilhé
,
J.
,
1997
, “
Adhesion Increase by Interface Mixing
,”
Phil. Mag. A
,
75
(
2
), pp.
369
377
.
19.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1952
,
Theory of Elasticity
,
Mc Graw-Hill Book Company Inc.
,
New York
.
20.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
,
John Wiley Sons, Wiley Interscience Publication
,
New York
.
21.
Landau
,
L.
, and
Lifshitz
,
E.
,
1970
,
Theory of Elasticity
,
Pergamon Press Ltd.
,
Oxford
.
22.
Jagannadham
,
V.
, and
Marcinkowski
,
M.
,
1978
, “
Comparison of the Image and Surface Dislocation Models
,”
Phys. Stat. Sol. (a)
,
50
, pp.
293
302
.
23.
Kolesnikova
,
A.
, and
Romanov
,
A.
,
2004
, “
Virtual Circular Dislocation-Disclination Loop Technique in Boundary Value Problems in the Theory of Defects
,”
ASME J. Appl. Mech.
,
71
, pp.
409
417
.
24.
Lubarda
,
V.
,
1997
, “
Energy Analysis of Dislocation Arrays Near Bimaterial Interfaces
,”
Int. J. Sol. Struct.
,
34
, pp.
1053
1073
.
25.
Kolesnikova
,
A.
,
1984
, “Disclinations and Dislocations in a Plate of Finite Thickness,”
Experimental Investigation and Theoretical Description of Disclinations
,
I. A.
Vladimirov
, ed.,
Ioffe Institute
,
Leningrad
, pp.
194
200
.
26.
Vladimirov
,
V.
,
Kolesnikova
,
A.
, and
Romanov
,
A.
,
1985
, “
Wedge Disclinations in an Elastic Plate
,”
Phys. Metals and Metallurgy
,
60
, pp.
58
67
.
27.
Peach
,
M.
, and
Köhler
,
J.
,
1950
, “
The Forces Exerted on Dislocations and the Stress Fields Produced by Them
,”
Phys. Rev.
,
80
, pp.
436
439
.
You do not currently have access to this content.