Abstract

A closed-form analytical solution is developed for a planar inhomogeneous beam subjected to transverse loading, using a variational asymptotic method (VAM). The VAM decouples the problem into a cross-sectional and an along-the-length analysis, leading to a set of ordinary differential equations. These equations along with associated boundary conditions have been solved to obtain the closed-form analytical solutions. Three distinct gradation models have been used to validate the present formulation against 3D finite element analysis and few prominent results from the literature. Excellent agreement has been obtained for all the test cases. Key contributions of the present work are (a) the solutions have been obtained without any ad hoc and a priori assumptions and (b) the ordered warping solutions result in Euler–Bernoulli type deformation in the zeroth-order, whereas the higher-order solutions provide novel closed-form expressions for transverse shear strain and stress. Finally, the effect of inhomogeneity on various field variables has been analyzed and discussed.

References

1.
Gupta
,
A.
, and
Talha
,
M.
,
2015
, “
Recent Development in Modeling and Analysis of Functionally Graded Materials and Structures
,”
Prog. Aerosp. Sci.
,
79
, pp.
1
14
.
2.
Erdogan
,
F.
,
1995
, “
Fracture Mechanics of Functionally Graded Materials
,”
Compos. Eng.
,
5
(
7
), pp.
753
770
.
3.
Watari
,
F.
,
Yokoyama
,
A.
,
Omori
,
M.
,
Hirai
,
T.
,
Kondo
,
H.
,
Uo
,
M.
, and
Kawasaki
,
T.
,
2004
, “
Biocompatibility of Materials and Development to Functionally Graded Implant for Bio-medical Application
,”
Compos. Sci. Technol.
,
64
(
6
), pp.
893
908
.
4.
Müller
,
E.
,
Drašar
,
Č.
,
Schilz
,
J.
, and
Kaysser
,
W.
,
2003
, “
Functionally Graded Materials for Sensor and Energy Applications
,”
Mater. Sci. Eng. A
,
362
(
1–2
), pp.
17
39
.
5.
Wosko
,
M.
,
Paszkiewicz
,
B.
,
Piasecki
,
T.
,
Szyszka
,
A.
,
Paszkiewicz
,
R.
, and
Tlaczala
,
M.
,
2005
, “
Application and Modeling of Functionally Graded Materials for Optoelectronic Devices
,”
Proceedings of 2005 International Students and Young Scientists Workshop Photonics and Microsystems
,
Dresden, Germany
,
July 7–8
, pp.
87
89
.
6.
Lee
,
Y.-D.
, and
Erdogan
,
F.
,
1995
, “
Residual/Thermal Stresses in FGM and Laminated Thermal Barrier Coatings
,”
Int. J. Fract.
,
69
(
2
), pp.
145
165
.
7.
Icardi
,
U.
, and
Ferrero
,
L.
,
2009
, “
Optimisation of Sandwich Panels With Functionally Graded Core and Faces
,”
Compos. Sci. Technol.
,
69
(
5
), pp.
575
585
.
8.
Nie
,
G.
,
Zhong
,
Z.
, and
Batra
,
R.
,
2011
, “
Material Tailoring for Functionally Graded Hollow Cylinders and Spheres
,”
Compos. Sci. Technol.
,
71
(
5
), pp.
666
673
.
9.
Eltaher
,
M.
,
Alshorbagy
,
A.
, and
Mahmoud
,
F.
,
2013
, “
Determination of Neutral Axis Position and Its Effect on Natural Frequencies of Functionally Graded Macro/Nanobeams
,”
Compos. Struct.
,
99
, pp.
193
201
.
10.
Eltaher
,
M.
,
Khairy
,
A.
,
Sadoun
,
A.
, and
Omar
,
F.-A.
,
2014
, “
Static and Buckling Analysis of Functionally Graded Timoshenko Nanobeams
,”
Appl. Math. Comput.
,
229
(
Feb.
), pp.
283
295
.
11.
Sankar
,
B.
,
2001
, “
An Elasticity Solution for Functionally Graded Beams
,”
Compos. Sci. Technol.
,
61
(
5
), pp.
689
696
.
12.
Zhu
,
H.
, and
Sankar
,
B. V.
,
2004
, “
A Combined Fourier Series–Galerkin Method for the Analysis of Functionally Graded Beams
,”
ASME J. Appl. Mech.
,
71
(
3
), pp.
421
424
.
13.
Ding
,
H.
,
Huang
,
D.
, and
Chen
,
W.
,
2007
, “
Elasticity Solutions for Plane Anisotropic Functionally Graded Beams
,”
Int. J. Solids Struct.
,
44
(
1
), pp.
176
196
.
14.
Silverman
,
B. W.
,
1996
, “
Smoothed Functional Principal Components Analysis by Choice of Norm
,”
Ann. Stat.
,
24
(
1
), pp.
1
24
.
15.
Zhong
,
Z.
, and
Yu
,
T.
,
2007
, “
Analytical Solution of a Cantilever Functionally Graded Beam
,”
Compos. Sci. Technol.
,
67
(
3–4
), pp.
481
488
.
16.
Kadoli
,
R.
,
Akhtar
,
K.
, and
Ganesan
,
N.
,
2008
, “
Static Analysis of Functionally Graded Beams Using Higher Order Shear Deformation Theory
,”
Appl. Math. Model.
,
32
(
12
), pp.
2509
2525
.
17.
Nie
,
G.
,
Zhong
,
Z.
, and
Chen
,
S.
,
2013
, “
Analytical Solution for a Functionally Graded Beam With Arbitrary Graded Material Properties
,”
Compos. B Eng.
,
44
(
1
), pp.
274
282
.
18.
Huang
,
Y.
, and
Ouyang
,
Z.-Y.
,
2020
, “
Exact Solution for Bending Analysis of Two-Directional Functionally Graded Timoshenko Beams
,”
Arch. Appl. Mech.
,
90
(
5
), pp.
1005
1023
.
19.
Berdichevskii
,
V.
,
1979
, “
Variational-Asymptotic Method of Constructing a Theory of Shells
,”
J. Appl. Math. Mech.
,
43
(
4
), pp.
711
736
.
20.
Sachdeva
,
C.
, and
Padhee
,
S. S.
,
2018
, “
Functionally Graded Cylinders: Asymptotically Exact Analytical Formulations
,”
Appl. Math. Model.
,
54
, pp.
782
802
.
21.
Padhee
,
S.
, and
Harursampath
,
D.
,
2012
, “
Radial Deformation of Cylinders Due to Torsion
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
061013
.
22.
Shi
,
Z.
,
Zhong
,
Y.
,
Yi
,
Q.
, and
Peng
,
X.
,
2021
, “
High Efficiency Analysis Model for Composite Honeycomb Sandwich Plate by Using Variational Asymptotic Method
,”
Thin-Walled Struct.
,
163
, p.
107709
.
23.
Chen
,
J.
,
Zhong
,
Y.
,
Luo
,
Q.
, and
Shi
,
Z.
,
2021
, “
Static and Dynamic Analysis of Isogrid Stiffened Composite Plates (ISCP) Using Equivalent Model Based on Variational Asymptotic Method
,”
Thin-Walled Struct.
,
163
, p.
107671
.
24.
Ghorashi
,
M.
,
2016
, “Review of the Variational Asymptotic Method and the Intrinsic Equations of a Beam,”
Statics and Rotational Dynamics of Composite Beams
,
Springer International Publishing
, pp.
23
47
.
25.
Harursampath
,
D.
,
Harish
,
A. B.
, and
Hodges
,
D. H.
,
2017
, “
Model Reduction in Thin-Walled Open-Section Composite Beams Using Variational Asymptotic Method. Part I: Theory
,”
Thin-Walled Struct.
,
117
, pp.
356
366
.
26.
Yu
,
W.
,
Hodges
,
D. H.
, and
Ho
,
J. C.
,
2012
, “
Variational Asymptotic Beam Sectional Analysis – An Updated Version
,”
Int. J. Eng. Sci.
,
59
, pp.
40
64
.
27.
Wang
,
Q.
, and
Yu
,
W.
,
2014
, “
A Variational Asymptotic Approach for Thermoelastic Analysis of Composite Beams
,”
Adv. Aircr. Spacecr. Sci.
,
1
(
1
), p.
93
.
28.
Ghorashi
,
M.
,
2018
, “
Nonlinear Static and Stability Analysis of Composite Beams by the Variational Asymptotic Method
,”
Int. J. Eng. Sci.
,
128
, pp.
127
150
.
29.
Yifeng
,
Z.
,
Lei
,
C.
, and
Yu
,
W.
,
2012
, “
Variational Asymptotic Modeling of the Multilayer Functionally Graded Cylindrical Shells
,”
Compos. Struct.
,
94
(
3
), pp.
966
976
.
30.
Sachdeva
,
C.
, and
Padhee
,
S. S.
,
2019
, “
Analysis of Bidirectionally Graded Cylindrical Beams Using Variational Asymptotic Method
,”
AIAA J.
,
57
(
10
), pp.
1
13
.
31.
Sachdeva
,
C.
,
Gupta
,
M.
, and
Hodges
,
D. H.
,
2018
, “
Modeling of Initially Curved and Twisted Smart Beams Using Intrinsic Equations
,”
Int. J. Solids Struct.
,
148–149
, pp.
3
13
.
32.
Yu
,
W.
,
Hodges
,
D. H.
,
Volovoi
,
V.
, and
Cesnik
,
C. E.
,
2002
, “
On Timoshenko-Like Modeling of Initially Curved and Twisted Composite Beams
,”
Int. J. Solids Struct.
,
39
(
19
), pp.
5101
5121
.
33.
Dewey Hodges
,
G.
,
2006
,
Nonlinear Composite Beam Theory
,
AIAA
,
Reston, VA
.
34.
Rajagopal
,
A.
,
2019
, “
Variational Asymptotic Based Shear Correction Factor for Isotropic Circular Tubes
,”
AIAA J.
,
57
(
10
), pp.
4125
4131
.
35.
Inc., W. R. Mathematica, Version 13.1
Champaign, IL
,
2022
.
36.
Ogden
,
R.
,
1997
,
Non-Linear Elastic Deformations
(
Dover Civil and Mechanical Engineering
),
Dover Publications
,
Chichester, UK
.
37.
Wang
,
C.
,
Ke
,
L.
,
Chowdhury
,
A. R.
,
Yang
,
J.
,
Kitipornchai
,
S.
, and
Fernando
,
D.
,
2017
, “
Critical Examination of Midplane and Neutral Plane Formulations for Vibration Analysis of FGM Beams
,”
Eng. Struct.
,
130
, pp.
275
281
.
38.
Ebrahimi
,
F.
, and
Salari
,
E.
,
2015
, “
A Semi-Analytical Method for Vibrational and Buckling Analysis of Functionally Graded Nanobeams Consideringthe Physical Neutral Axis Position
,”
Comput. Model. Eng. Sci.
,
105
, pp.
151
181
.
39.
Chen
,
Y.
,
Guo
,
X.
,
Zhang
,
D.
, and
Li
,
L.
,
2020
, “
Dynamic Modeling and Analysis of Rotating FG Beams for Capturing Steady Bending Deformation
,”
Appl. Math. Model.
,
88
, pp.
498
517
.
40.
Amandeep
,
, and
Padhee
,
S. S.
,
2022
, “
Plates With Functionally Graded Materials Under Thermo-Mechanical Loading: A Study
,”
Int. J. Comput. Aided Eng. Technol.
,
1
(
1
), p.
1
.
41.
,
C.
,
Chen
,
W.
,
Xu
,
R.
, and
Lim
,
C.
,
2008
, “
Semi-Analytical Elasticity Solutions for Bi-Directional Functionally Graded Beams
,”
Int. J. Solids Struct.
,
45
(
1
), pp.
258
275
.
You do not currently have access to this content.