Abstract

Introducing inelastic dissipaters can enhance the adhesion of hydrogels. However, the adhesion energy enhanced by inelastic dissipaters dramatically decreases when the adhesion interface is loaded repeatedly. Here, we achieve tough adhesion of hydrogels by introducing a structure of a pillar array to the adhesion interface as elastic dissipaters. Each pillar undergoes large deformation before debonding. Once debonded, all the elastic energy stored in the pillars is released, and the adhesion energy is greatly improved. As a proof of concept, we adhere a piece of polyacrylamide hydrogel to a piece of polyacrylic acid hydrogel and measure the adhesion energy by a 90-degree peel test. The adhesion energy is 56 J/m2 for the adhesion without structures and 249 J/m2 for the adhesion with structures. We apply the pull-off test on a pillar unit and estimate the adhesion energy enhanced by the pillars using a simplified model, which is in good agreement with the experimental results. We conduct experiments to study the influence of the height and width of the structures on the adhesion energy. The mechanism of enhancement as well as the influence of geometric parameters is further studied by finite element method. The proposed mechanism provides a simple method of structural design to enhance hydrogel adhesion.

References

1.
Park
,
S.
,
Heo
,
S. W.
,
Lee
,
W.
,
Inoue
,
D.
,
Jiang
,
Z.
,
Yu
,
K.
,
Jinno
,
H.
, et al
,
2018
, “
Self-Powered Ultra-Flexible Electronics via Nano-Grating-Patterned Organic Photovoltaics
,”
Nature
,
561
(
7724
), pp.
516
521
.
2.
Kim
,
D. H.
,
Lu
,
N. S.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S. D.
,
Wu
,
J.
, et al
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
3.
Lin
,
S. T.
,
Yuk
,
H.
,
Zhang
,
T.
,
Parada
,
G. A.
,
Koo
,
H.
,
Yu
,
C. J.
, and
Zhao
,
X. H.
,
2016
, “
Stretchable Hydrogel Electronics and Devices
,”
Adv. Mater.
,
28
(
22
), pp.
4497
4505
.
4.
Wang
,
J. X.
,
Yan
,
C. Y.
,
Cai
,
G. F.
,
Cui
,
M. Q.
,
Eh
,
A. L. S.
, and
Lee
,
P. S.
,
2016
, “
Extremely Stretchable Electroluminescent Devices With Ionic Conductors
,”
Adv. Mater.
,
28
(
22
), pp.
4490
4496
.
5.
Drotlef
,
D.-M.
,
Amjadi
,
M.
,
Yunusa
,
M.
, and
Sitti
,
M.
,
2017
, “
Bioinspired Composite Microfibers for Skin Adhesion and Signal Amplification of Wearable Sensors
,”
Adv. Mater.
,
29
(
28
), p.
1701353
.
6.
Minev
,
I. R.
,
Musienko
,
P.
,
Hirsch
,
A.
,
Barraud
,
Q.
,
Wenger
,
N.
,
Moraud
,
E. M.
,
Gandar
,
J.
, et al
,
2015
, “
Electronic Dura Mater for Long-Term Multimodal Neural Interfaces
,”
Science
,
347
(
6218
), pp.
159
163
.
7.
Lang
,
N.
,
Pereira
,
M. J.
,
Lee
,
Y.
,
Friehs
,
I.
,
Vasilyev
,
N. V.
,
Feins
,
E. N.
,
Ablasser
,
K.
, et al
,
2014
, “
A Blood-Resistant Surgical Glue for Minimally Invasive Repair of Vessels and Heart Defects
,”
Sci. Transl. Med.
,
6
(
218
).
8.
Li
,
J.
,
Celiz
,
A. D.
,
Yang
,
J.
,
Yang
,
Q.
,
Wamala
,
I.
,
Whyte
,
W.
,
Seo
,
B. R.
, et al
,
2017
, “
Tough Adhesives for Diverse Wet Surfaces
,”
Science
,
357
(
6349
), pp.
378
381
.
9.
Wang
,
D. A.
,
Varghese
,
S.
,
Sharma
,
B.
,
Strehin
,
I.
,
Fermanian
,
S.
,
Gorham
,
J.
,
Fairbrother
,
D. H.
,
Cascio
,
B.
, and
Elisseeff
,
J. H.
,
2007
, “
Multifunctional Chondroitin Sulphate for Cartilage Tissue-Biomaterial Integration
,”
Nat. Mater.
,
6
(
5
), pp.
385
392
.
10.
Annabi
,
N.
,
Zhang
,
Y.-N.
,
Assmann
,
A.
,
Sani
,
E. S.
,
Cheng
,
G.
,
Lassaletta
,
A. D.
,
Vegh
,
A.
, et al
,
2017
, “
Engineering a Highly Elastic Human Protein-Based Sealant for Surgical Applications
,”
Sci. Transl. Med.
,
9
(
410
), p.
eaai7466
.
11.
Sharma
,
B.
,
Fermanian
,
S.
,
Gibson
,
M.
,
Unterman
,
S.
,
Herzka
,
D. A.
,
Cascio
,
B.
,
Coburn
,
J.
, et al
,
2013
, “
Human Cartilage Repair With a Photoreactive Adhesive-Hydrogel Composite
,”
Sci. Transl. Med.
,
5
(
167
).
12.
Hoare
,
T. R.
, and
Kohane
,
D. S.
,
2008
, “
Hydrogels in Drug Delivery: Progress and Challenges
,”
Polymer
,
49
(
8
), pp.
1993
2007
.
13.
Li
,
J. Y.
, and
Mooney
,
D. J.
,
2016
, “
Designing Hydrogels for Controlled Drug Delivery
,”
Nat. Rev. Mater.
,
1
(
12
), p.
16071
.
14.
Prausnitz
,
M. R.
, and
Langer
,
R.
,
2008
, “
Transdermal Drug Delivery
,”
Nat. Biotechnol.
,
26
(
11
), pp.
1261
1268
.
15.
Blacklow
,
S. O.
,
Li
,
J.
,
Freedman
,
B. R.
,
Zeidi
,
M.
,
Chen
,
C.
, and
Mooney
,
D. J.
,
2019
, “
Bioinspired Mechanically Active Adhesive Dressings to Accelerate Wound Closure
,”
Sci. Adv.
,
5
(
7
), p.
eaaw3963
.
16.
Bouten
,
P. J. M.
,
Zonjee
,
M.
,
Bender
,
J.
,
Yauw
,
S. T. K.
,
van Goor
,
H.
,
van Hest
,
J. C. M.
, and
Hoogenboom
,
R.
,
2014
, “
The Chemistry of Tissue Adhesive Materials
,”
Prog. Polym. Sci.
,
39
(
7
), pp.
1375
1405
.
17.
Mehdizadeh
,
M.
, and
Yang
,
J.
,
2013
, “
Design Strategies and Applications of Tissue Bioadhesives
,”
Macromol. Biosci.
,
13
(
3
), pp.
271
288
.
18.
Yang
,
J. W.
,
Bai
,
R. B.
,
Chen
,
B. H.
, and
Suo
,
Z. G.
,
2020
, “
Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics
,”
Adv. Funct. Mater.
,
30
(
2
), p.
1901693
.
19.
Gao
,
Y.
,
Chen
,
J. J.
,
Han
,
X. Y.
,
Pan
,
Y. D.
,
Wang
,
P. Y.
,
Wang
,
T. J.
, and
Lu
,
T. Q.
,
2020
, “
A Universal Strategy for Tough Adhesion of Wet Soft Material
,”
Adv. Funct. Mater.
,
30
(
36
), p.
2003207
.
20.
Gao
,
Y.
,
Han
,
X. Y.
,
Chen
,
J. J.
,
Pan
,
Y. D.
,
Yang
,
M.
,
Lu
,
L. H.
,
Yang
,
J.
,
Suo
,
Z. G.
, and
Lu
,
T. Q.
,
2021
, “
Hydrogel-Mesh Composite for Wound Closure
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
28
), p.
e2103457118
.
21.
Gao
,
Y.
,
Wu
,
K. L.
, and
Suo
,
Z. G.
,
2019
, “
Photodetachable Adhesion
,”
Adv. Mater.
,
31
(
6
), p.
1806948
.
22.
Liu
,
Q. H.
,
Nian
,
G. D.
,
Yang
,
C. H.
,
Qu
,
S. X.
, and
Suo
,
Z. G.
,
2018
, “
Bonding Dissimilar Polymer Networks in Various Manufacturing Processes
,”
Nat. Commun.
,
9
(
1
), p.
846
.
23.
Yang
,
J. W.
,
Bai
,
R. B.
, and
Suo
,
Z. G.
,
2018
, “
Topological Adhesion of Wet Materials
,”
Adv. Mater.
,
30
(
25
), p.
1800671
.
24.
Wang
,
Y.
,
Liang
,
D.
,
Suo
,
Z.
, and
Jia
,
K.
,
2020
, “
Synergy of Noncovalent Interlink and Covalent Toughener for Tough Hydrogel Adhesion
,”
Extreme Mech. Lett.
,
39
, p.
100797
.
25.
Wang
,
S. Y.
,
Li
,
J. R.
,
Pan
,
Y. D.
,
Liu
,
F. K.
,
Zeng
,
L. S.
,
Gao
,
Y.
, and
Lu
,
T. Q.
,
2022
, “
A Double-Network Strategy for the Tough Tissue Adhesion of Hydrogels With Long-Term Stability Under Physiological Environment
,”
Soft Matter
,
18
(
33
), pp.
6192
6199
.
26.
Wang
,
Y.
,
Yang
,
X.
,
Nian
,
G.
, and
Suo
,
Z.
,
2020
, “
Strength and Toughness of Adhesion of Soft Materials Measured in Lap Shear
,”
J. Mech. Phys. Solids
,
143
, p.
103988
.
27.
Wang
,
Y.
,
Yin
,
T.
, and
Suo
,
Z.
,
2021
, “
Polyacrylamide Hydrogels. III. Lap Shear and Peel
,”
J. Mech. Phys. Solids
,
150
, p.
104348
.
28.
Ma
,
Z.
,
Bourquard
,
C.
,
Gao
,
Q.
,
Jiang
,
S.
,
De Iure-Grimmel
,
T.
,
Huo
,
R.
,
Li
,
X.
, et al
,
2022
, “
Controlled Tough Bioadhesion Mediated by Ultrasound
,”
Science
,
377
(
6607
), pp.
751
755
.
29.
Liu
,
J. J.
,
Yang
,
C. H.
,
Yin
,
T. H.
,
Wang
,
Z. J.
,
Qu
,
S. X.
, and
Suo
,
Z. G.
,
2019
, “
Polyacrylamide Hydrogels. II. Elastic Dissipater
,”
J. Mech. Phys. Solids
,
133
, p.
103737
.
30.
Wang
,
Z.
,
Xiang
,
C.
,
Yao
,
X.
,
Le Floch
,
P.
,
Mendez
,
J.
, and
Suo
,
Z.
,
2019
, “
Stretchable Materials of High Toughness and Low Hysteresis
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
13
), pp.
5967
5972
.
31.
Zhang
,
W. L.
,
Gao
,
Y.
,
Yang
,
H.
,
Suo
,
Z. G.
, and
Lu
,
T. Q.
,
2020
, “
Fatigue-Resistant Adhesion I. Long-Chain Polymers as Elastic Dissipaters
,”
Extreme Mech. Lett.
,
39
, p.
100813
.
32.
Chung
,
J. Y.
, and
Chaudhury
,
M. K.
,
2005
, “
Roles of Discontinuities in Bio-Inspired Adhesive Pads
,”
J. R. Soc Interface
,
2
(
2
), pp.
55
61
.
33.
Gorb
,
S.
,
Varenberg
,
M.
,
Peressadko
,
A.
, and
Tuma
,
J.
,
2007
, “
Biomimetic Mushroom-Shaped Fibrillar Adhesive Microstructure
,”
J. R. Soc Interface
,
4
(
13
), pp.
271
275
.
34.
He
,
Y. F.
,
Wan
,
X. D.
,
Chen
,
Y. J.
, and
Yang
,
C. H.
,
2021
, “
Enhance the Debonding Resistance of Hydrogel by Large-Scale Bridging
,”
J Mech Phys Solids
,
155
, p.
104570
.
35.
Li
,
Q.
,
Liu
,
W. X.
,
Yang
,
C. H.
,
Rao
,
P.
,
Lv
,
P. Y.
,
Duan
,
H. L.
, and
Hong
,
W.
,
2022
, “
Kirigami-Inspired Adhesion With High Directional Asymmetry
,”
J Mech Phys Solids
,
169
, p.
105053
.
36.
Wang
,
Y. C.
,
Jia
,
K.
,
Xiang
,
C. P.
,
Yang
,
J. W.
,
Yao
,
X.
, and
Suo
,
Z. G.
,
2019
, “
Instant, Tough, Noncovalent Adhesion
,”
ACS Appl. Mater. Interfaces
,
11
(
43
), pp.
40749
40757
.
37.
Kendall
,
K.
,
1975
, “
Thin-Film Peeling—the Elastic Term
,”
J. Phys. D: Appl. Phys.
,
8
(
13
), pp.
1449
1452
.
38.
Lake
,
G. J.
, and
Thomas
,
A. G.
,
1967
, “
The Strength of Highly Elastic Materials
,”
Proc. R. Soc. London, Ser. A
,
300
(
1460
), pp.
108
119
.
39.
ABAQUS
,
2013
, ABAQUS Analysis User’s Manual, Version 6.13.
You do not currently have access to this content.