Abstract

The quasi-static and dynamic compressive behaviors of carbon fiber-reinforced plastic (CFRP) Kagome lattice structures subjected to quasi-static load and low-velocity impact were investigated experimentally and numerically. CFRP Kagome lattice structures were fabricated by using the interlocking method. The quasi-static compression and low-velocity impact experiments were carried out and the failure mechanisms of CFRP Kagome lattice structures were explored. A user-defined material subroutine (VUMAT) involving three-dimensional Hashin criterion and progressive damage evolution was developed and implemented in the refined finite element (FE) model to model the failure of composite lattice structures. Good agreement is achieved between FE simulations and experimental results. It is shown that both in-plane stiffness and the failure mode of CFRP Kagome lattice structure are sensitive to the load directions. CFRP Kagome lattice structures subjected to quasi-static load experience elastic deformation, bending/kinking failure, rib fracture, and structure collapse sequentially. CFRP Kagome lattice structures subjected to low-velocity impact suffer from the multiple fractures at the slots and the maximum peak loads of dynamic response increase with increasing the impact velocity.

References

1.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.
2.
Song
,
Z. H.
,
Le
,
J.
,
Whisler
,
D.
, and
Kim
,
H.
,
2018
, “
Skin-Stringer Interface Failure Investigation of Stringer-Stiffened Curved Composite Panels Under Hail Ice Impact
,”
Int. J. Impact Eng.
,
122
, pp.
439
450
.
3.
Santoro
,
D.
,
Bellisario
,
D.
,
Quadrini
,
F.
, and
Santo
,
L.
,
2020
, “
Anisogrid Thermoplastic Composite Lattice Structure by Innovative Out-of-Autoclave Process
,”
Int. J. Adv. Manuf. Technol.
,
109
(
7–8
), pp.
1941
1952
.
4.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
309
327
.
5.
Liu
,
Y.
,
Zhou
,
C.
,
Cen
,
B.
,
Zeng
,
Z.
,
Lu
,
X.
, and
Zhu
,
X.
,
2017
, “
Compression Property of a Novel Lattice Sandwich Structure
,”
Compos. B. Eng.
,
117
, pp.
130
137
.
6.
Najafi
,
M.
, and
Eslami-Farsani
,
R.
,
2021
, “
Design and Characterization of a Multilayered Hybrid Cored-Sandwich Panel Stiffened by Thin-Walled Lattice Structure
,”
Thin-Walled Struct.
,
161
, p.
107514
.
7.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
466
(
2121
), pp.
2495
2516
.
8.
Jiang
,
S.
,
Sun
,
F.
,
Zhang
,
X.
, and
Fan
,
H.
,
2017
, “
Interlocking Orthogrid: An Efficient Way to Construct Lightweight Lattice-Core Sandwich Composite Structure
,”
Compos. Struct.
,
176
, pp.
55
71
.
9.
Vasiliev
,
V. V.
, and
Razin
,
A. F.
,
2006
, “
Anisogrid Composite Lattice Structures for Spacecraft and Aircraft Applications
,”
Compos. Struct.
,
76
(
1–2
), pp.
182
189
.
10.
Vasiliev
,
V. V.
,
Barynin
,
V. A.
, and
Razin
,
A. F.
,
2012
, “
Anisogrid Composite Lattice Structures—Development and Aerospace Applications
,”
Compos. Struct.
,
94
(
3
), pp.
1117
1127
.
11.
Hunt
,
C. J.
,
Morabito
,
F.
,
Grace
,
C.
,
Zhao
,
Y.
, and
Woods
,
B. K. S.
,
2022
, “
A Review of Composite Lattice Structures
,”
Compos. Struct.
,
284
, p.
115120
.
12.
Han
,
D. Y.
, and
Tsai
,
S. W.
,
2003
, “
Interlocked Composite Grids Design and Manufacturing
,”
J. Compos. Mater.
,
37
(
4
), pp.
287
316
.
13.
Chen
,
L.
,
Fan
,
H.
,
Sun
,
F.
,
Zhao
,
L.
, and
Fang
,
D.
,
2013
, “
Improved Manufacturing Method and Mechanical Performances of Carbon Fiber Reinforced Lattice-Core Sandwich Cylinder
,”
Thin-Walled Struct.
,
68
, pp.
75
84
.
14.
Vitale
,
J. P.
,
Francucci
,
G.
,
Xiong
,
J.
, and
Stocchi
,
A.
,
2017
, “
Failure Mode Maps of Natural and Synthetic Fiber Reinforced Composite Sandwich Panels
,”
Compos. Part A Appl. Sci.
,
94
, pp.
217
225
.
15.
Wei
,
X.
,
Wu
,
Q.
,
Gao
,
Y.
, and
Xiong
,
J.
,
2020
, “
Bending Characteristics of All-Composite Hexagon Honeycomb Sandwich Beams: Experimental Tests and a Three-Dimensional Failure Mechanism Map
,”
Mech. Mater.
,
148
, p.
103401
.
16.
Zhang
,
P.
,
Han
,
Z.
,
Ran
,
X.
,
Sun
,
S.
, and
Fu
,
H.
,
2022
, “
Path Design and Compression Behavior of 3D Printed Continuous Carbon Fiber Reinforced Composite Lattice Sandwich Structures
,”
Compos. Struct.
,
296
, p.
115893
.
17.
Russell
,
B. P.
,
Liu
,
T.
,
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2011
, “
Quasi-Static Three-Point Bending of Carbon Fiber Sandwich Beams With Square Honeycomb Cores
,”
ASME J. Appl. Mech.
,
78
(
3
), p.
031008
.
18.
George
,
T.
,
Deshpande
,
V. S.
, and
Wadley
,
H. N. G.
,
2013
, “
Mechanical Response of Carbon Fiber Composite Sandwich Panels With Pyramidal Truss Cores
,”
Compos. Part A Appl. Sci.
,
47
, pp.
31
40
.
19.
Vitale
,
P.
,
Francucci
,
G.
,
Rapp
,
H.
, and
Stocchi
,
A.
,
2020
, “
Shear Response of Ultra-lightweight CFRP Cores
,”
Compos. Struct.
,
238
, p.
111879
.
20.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.
21.
Fleck
,
N. A.
, and
Qiu
,
X. M.
,
2007
, “
The Damage Tolerance of Elastic-Brittle, Two-Dimensional Isotropic Lattices
,”
J. Mech. Phys. Solids
,
55
(
3
), pp.
562
588
.
22.
Romijn
,
N. E. R.
, and
Fleck
,
N. A.
,
2007
, “
The Fracture Toughness of Planar Lattices: Imperfection Sensitivity
,”
J. Mech. Phys. Solids
,
55
(
12
), pp.
2538
2564
.
23.
Symons
,
D. D.
, and
Fleck
,
N. A.
,
2008
, “
The Imperfection Sensitivity of Isotropic Two-Dimensional Elastic Lattices
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051011
.
24.
Fan
,
H. L.
, and
Fang
,
D. N.
,
2008
, “
Anisotropic Mechanical Properties of Lattice Grid Composites
,”
J. Compos. Mater.
,
42
(
23
), pp.
2445
2460
.
25.
Fan
,
H. L.
,
Meng
,
F. H.
, and
Yang
,
W.
,
2007
, “
Sandwich Panels With Kagome Lattice Cores Reinforced by Carbon Fibers
,”
Compos. Struct.
,
81
(
4
), pp.
533
539
.
26.
Fan
,
H. L.
,
Yang
,
L.
,
Sun
,
F. F.
, and
Fang
,
D. N.
,
2013
, “
Compression and Bending Performances of Carbon Fiber Reinforced Lattice-Core Sandwich Composites
,”
Compos. - A: Appl. Sci. Manuf.
,
52
, pp.
118
125
.
27.
Lai
,
C. L.
,
Hu
,
Y.
,
Zheng
,
Q.
, and
Fan
,
H. L.
,
2020
, “
All-composite Flanges for Anisogrid Lattice-Core Sandwich Panels to Bear Stretching Load
,”
Compos. Commun.
,
19
, pp.
189
193
.
28.
Morozov
,
E. V.
,
Lopatin
,
A. V.
, and
Nesterov
,
V. A.
,
2011
, “
Finite-Element Modelling and Buckling Analysis of Anisogrid Composite Lattice Cylindrical Shells
,”
Compos. Struct.
,
93
(
2
), pp.
308
323
.
29.
Shroff
,
S.
,
Acar
,
E.
, and
Kassapoglou
,
C.
,
2017
, “
Design, Analysis, Fabrication, and Testing of Composite Grid-Stiffened Panels for Aircraft Structures
,”
Thin-Walled Struct.
,
119
, pp.
235
246
.
30.
Zhang
,
X.
,
1998
, “
Impact Damage in Composite Aircraft Structures—Experimental Testing and Numerical Simulation
,”
Proc. Inst. Mech. Eng. G: J. Aerosp. Eng.
,
212
(
G4
), pp.
245
259
.
31.
Park
,
S.
,
Russell
,
B. P.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2012
, “
Dynamic Compressive Response of Composite Square Honeycombs
,”
Compos. - A: Appl. Sci. Manuf.
,
43
(
3
), pp.
527
536
.
32.
Kao
,
Y. T.
,
Amin
,
A. R.
,
Payne
,
N.
,
Wang
,
J.
, and
Tai
,
B. L.
,
2018
, “
Low-Velocity Impact Response of 3D-Printed Lattice Structure with Foam Reinforcement
,”
Compos. Struct.
,
192
, pp.
93
100
.
33.
Hwang
,
J. S.
,
Choi
,
T. G.
,
Lee
,
D.
,
Lyu
,
M. Y.
,
Lee
,
D. G.
, and
Yang
,
D. Y.
,
2015
, “
Dynamic and Static Characteristics of Polypropylene Pyramidal Kagome Structures
,”
Compos. Struct.
,
131
, pp.
17
24
.
34.
Alia
,
R. A.
,
Al-Ali
,
O.
,
Kumar
,
S.
, and
Cantwell
,
W. J.
,
2019
, “
The Energy-Absorbing Characteristics of Carbon Fiber-Reinforced Epoxy Honeycomb Structures
,”
J. Compos. Mater.
,
53
(
9
), pp.
1145
1157
.
35.
Alia
,
R. A.
,
Zhou
,
J.
,
Guan
,
Z. W.
,
Qin
,
Q.
,
Duan
,
Y.
, and
Cantwell
,
W. J.
,
2020
, “
The Effect of Loading Rate on the Compression Properties of Carbon Fibre-Reinforced Epoxy Honeycomb Structures
,”
J. Compos. Mater.
,
54
(
19
), pp.
2565
2576
.
36.
Huang
,
W.
,
Xu
,
H. J.
,
Fan
,
Z. H.
,
Jiang
,
W. M.
, and
Liu
,
J. Y.
,
2020
, “
Dynamic Failure of Ceramic Particle Reinforced Foam-Filled Composite Lattice Core
,”
Compos. Sci. Technol.
,
193
, p.
108143
.
37.
Andrew
,
J. J.
,
Verma
,
P.
, and
Kumar
,
S.
,
2021
, “
Impact Behavior of Nanoengineered, 3D Printed Plate-Lattices
,”
Mater. Des.
,
202
,p.
109516
.
38.
Fan
,
H.
,
Jin
,
F.
, and
Fang
,
D.
,
2009
, “
Uniaxial Local Buckling Strength of Periodic Lattice Composites
,”
Mater. Des.
,
30
(
10
), pp.
4136
4145
.
39.
Fan
,
H. L.
,
Meng
,
F. H.
, and
Yang
,
W.
,
2006
, “
Mechanical Behaviors and Bending Effects of Carbon Fiber Reinforced Lattice Materials
,”
Arch. Appl. Mech.
,
75
(
10–12
), pp.
635
647
.
40.
Wang
,
A. J.
, and
McDowell
,
D. L.
,
2004
, “
In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs
,”
ASME J. Eng. Mater. Technol.
,
126
(
2
), pp.
137
156
.
41.
Huang
,
C. H.
, and
Lee
,
Y. J.
,
2003
, “
Experiments and Simulation of the Static Contact Crush of Composite Laminated Plates
,”
Compos. Struct.
,
61
(
3
), pp.
265
270
.
42.
Chen
,
L.
,
Peng
,
S.
,
Liu
,
J.
,
Liu
,
H.
,
Chen
,
L.
,
Du
,
B.
,
Li
,
W.
, and
Fang
,
D.
,
2020
, “
Compressive Response of Multi-layered Thermoplastic Composite Corrugated Sandwich Panels: Modelling and Experiments
,”
Compos. B. Eng.
,
189
, p.
107899
.
43.
Abedi
,
M. M.
,
Nedoushan
,
R. J.
,
Sheikhzadeh
,
M.
, and
Yu
,
W. R.
,
2020
, “
The Crashworthiness Performance of Thin-Walled Ultralight Braided Lattice Composite Columns: Experimental and Finite Element Study
,”
Compos. B. Eng.
,
202
, p.
108413
.
44.
Hashin
,
Z.
,
1980
, “
Failure Criteria for Unidirectional Fiber Composites
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
329
334
.
45.
Liu
,
P. F.
,
Liao
,
B. B.
,
Jia
,
L. Y.
, and
Peng
,
X. Q.
,
2016
, “
Finite Element Analysis of Dynamic Progressive Failure of Carbon Fiber Composite Laminates Under Low Velocity Impact
,”
Compos. Struct.
,
149
, pp.
408
422
.
46.
Donadon
,
M. V.
,
Iannucci
,
L.
,
Falzon
,
B. G.
,
Hodgkinson
,
J. M.
, and
de Almeida
,
S. F. M.
,
2008
, “
A Progressive Failure Model for Composite Laminates Subjected to Low Velocity Impact Damage
,”
Comput. Struct.
,
86
(
11–12
), pp.
1232
1252
.
47.
Pederson
,
J. J. D.
,
2008
, “
Finite Element Analysis of Carbon Fiber Composite Ripping Using ABAQUS
,” M.Sc. Thesis, Clemson University, Clemson, SC.
48.
Lapczyk
,
I.
, and
Hurtado
,
J. A.
,
2007
, “
Progressive Damage Modeling in Fiber-Reinforced Materials
,”
Compos. Part A Appl. Sci.
,
38
(
11
), pp.
2333
2341
.
49.
Faggiani
,
A.
, and
Falzon
,
B. G.
,
2010
, “
Predicting Low-Velocity Impact Damage on a Stiffened Composite Panel
,”
Compos. Part A Appl. Sci.
,
41
(
6
), pp.
737
749
.
50.
Lopes
,
C. S.
,
Camanho
,
P. P.
,
Gürdal
,
Z.
,
Maimí
,
P.
, and
González
,
E. V.
,
2009
, “
Low-Velocity Impact Damage on Dispersed Stacking Sequence Laminates. Part II: Numerical Simulations
,”
Compos. Sci. Technol.
,
69
(
7–8
), pp.
937
947
.
51.
Liu
,
H. B.
,
Falzon
,
B. G.
, and
Dear
,
J. P.
,
2019
, “
An Experimental and Numerical Study on the Crush Behaviour of Hybrid Unidirectional/Woven Carbon-Fibre Reinforced Composite Laminates
,”
Int. J. Mech. Sci.
,
164
, p.
105160
.
52.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
de Moura
,
M. F.
,
2003
, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
J. Compos. Mater.
,
37
(
16
), pp.
1415
1438
.
53.
Cui
,
W. C.
,
Wisnom
,
M. R.
, and
Jones
,
M.
,
1992
, “
A Comparison of Failure Criteria to Predict Delamination of Unidirectional Glass Epoxy Specimens Waisted Through the Thickness
,”
Composites
,
23
(
3
), pp.
158
166
.
54.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
,
1996
, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Technol.
,
56
(
4
), pp.
439
449
.
55.
Xin
,
S. H.
, and
Wen
,
H. M.
,
2015
, “
A Progressive Damage Model for Fiber Reinforced Plastic Composites Subjected to Impact Loading
,”
Int. J. Impact Eng.
,
75
, pp.
40
52
.
56.
Long
,
S. C.
,
Yao
,
X. H.
, and
Zhang
,
X. Q.
,
2015
, “
Delamination Prediction in Composite Laminates Under Low-Velocity Impact
,”
Compos. Struct.
,
132
, pp.
290
298
.
57.
Chen
,
Y.
,
Hou
,
S. J.
,
Fu
,
K. K.
,
Han
,
X.
, and
Ye
,
L.
,
2017
, “
Low-Velocity Impact Response of Composite Sandwich Structures: Modelling and Experiment
,”
Compos. Struct.
,
168
, pp.
322
334
.
58.
Zhou
,
J. J.
,
Wen
,
P. H.
, and
Wang
,
S. N.
,
2019
, “
Finite Element Analysis of a Modified Progressive Damage Model for Composite Laminates Under Low-Velocity Impact
,”
Compos. Struct.
,
225
, p.
111113
.
59.
Sung
,
N. H.
, and
Suh
,
N. P.
,
1979
, “
Effect of Fiber Orientation on Friction and Wear of Fiber Reinforced Polymeric Composites
,”
Wear
,
53
(
1
), pp.
129
141
.
60.
Schon
,
J.
,
2000
, “
Coefficient of Friction of Composite Delamination Surfaces
,”
Wear
,
237
(
1
), pp.
77
89
.
61.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Demosthenous
,
G. A.
, and
Ioannidis
,
M. B.
,
1997
, “
Analytical Modelling of the Static and Dynamic Axial Collapse of Thin-Walled Fibreglass Composite Conical Shells
,”
Int. J. Impact Eng.
,
19
(
5–6
), pp.
477
492
.
62.
Boria
,
S.
,
Scattina
,
A.
, and
Belingardi
,
G.
,
2015
, “
Axial Energy Absorption of CFRP Truncated Cones
,”
Compos. Struct.
,
130
, pp.
18
28
.
63.
Zhang
,
C.
,
Duodu
,
E. A.
, and
Gu
,
J.
,
2017
, “
Finite Element Modeling of Damage Development in Cross-ply Composite Laminates Subjected to Low Velocity Impact
,”
Compos. Struct.
,
173
, pp.
219
227
.
64.
Shi
,
Y.
,
Swait
,
T.
, and
Soutis
,
C.
,
2012
, “
Modelling Damage Evolution in Composite Laminates Subjected to Low Velocity Impact
,”
Compos. Struct.
,
94
(
9
), pp.
2902
2913
.
You do not currently have access to this content.