Abstract

Accurate characterization of contact deformation is of great difficulty especially for the area close to the interface. In this work, a theory-aided strain measurement method by combining modeling and experimental identification is developed for the characterization of contact deformation. The method consists of three procedures including displacement measurement, mechanical modeling, and strain identification. The displacement measurement introduces a modified digital image correlation to acquire the displacement field. In mechanical modeling, a contact model is developed so the relationship between the interfacial stress and the displacement is formulated. Finally, the strain identification procedure is used to optimize the unknown parameters by matching the modeled displacement to the experimental data, and then reconstruct the strain field using the model and the optimal parameters. By developing a discrete interfacial stress model and strain reconstruction algorithm, the proposed method can sensitively identify the strain concentration in the contact vicinity. Both simulation and experiment are carried out, and the effectiveness of the proposed method is discussed in detail.

References

1.
Sinclair
,
G. B.
,
2017
, “
Friction Effects on the Edge-of-Contact Stresses for Sliding Contact Between a Flat Punch With Rounded Corners and a Half Space
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121002
.
2.
Ma
,
J.
,
Ke
,
L.-L.
, and
Wang
,
Y.-S.
,
2015
, “
Sliding Frictional Contact of Functionally Graded Magneto-Electro-Elastic Materials Under a Conducting Flat Punch
,”
ASME J. Appl. Mech.
,
82
(
1
), p.
011009
.
3.
Sun
,
C.
,
Li
,
Y.
, and
Chen
,
J.
,
2020
, “
Strain Concentration Characterization for the Multi-tooth Contact Based on Multi-resolution Digital Image Correlation and Orthogonal Analysis
,”
Int. J. Mech. Sci.
,
167
, p.
105238
.
4.
Zhu
,
T.
, and
Shipway
,
P.
,
2021
, “
Contact Size and Debris Ejection in Fretting: The Inappropriate Use of Archard-Type Analysis of Wear Data and the Development of Alternative Wear Equations for Commonly Employed Non-Conforming Specimen Pair Geometries
,”
Wear
,
474–475
, p.
203710
.
5.
Hernandez
,
J. A.
, and
Al-Qadi
,
I. L.
,
2016
, “
Hyperelastic Modeling of Wide-Base Tire and Prediction of Its Contact Stresses
,”
J. Eng. Mech.
,
142
(
2
), p.
04015084
.
6.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
7.
Masoudi Nejad
,
R.
,
Shariati
,
M.
, and
Farhangdoost
,
K.
,
2016
, “
Effect of Wear on Rolling Contact Fatigue Crack Growth in Rails
,”
Tribol. Int.
,
94
, pp.
118
125
.
8.
Heirani
,
H.
, and
Farhangdoost
,
K.
,
2017
, “
Predicting Depth and Path of Subsurface Crack Propagation at Gear Tooth Flank Under Cyclic Contact Loading
,”
J. Solid Mech.
,
9
(
3
), pp.
587
598
.
9.
Fabrikant
,
V. I.
,
1986
, “
Inclined Flat Punch of Arbitrary Shape on an Elastic Half-Space
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
798
806
.
10.
Brutti
,
C.
,
2021
, “
A Theoretical Model for Elastic-Perfectly Plastic Flat Cylindrical Punch Indentation
,”
Mech. Mater.
,
155
, p.
103770
.
11.
Barber
,
J.
,
2018
,
Contact Mechanics Solid Mechanics and Its Applications
,
Springer International Publishing
,
Cham, Switzerland
, pp.
29
40
.
12.
Fang
,
X.
,
Zhang
,
C.
,
Chen
,
X.
,
Wang
,
Y.
, and
Tan
,
Y.
,
2015
, “
A New Universal Approximate Model for Conformal Contact and Non-Conformal Contact of Spherical Surfaces
,”
Acta Mechanica
,
226
, pp.
1657
1672
.
13.
Hariprasad
,
M. P.
,
Ramesh
,
K.
, and
Prabhune
,
B. C.
,
2018
, “
Evaluation of Conformal and Non-Conformal Contact Parameters Using Digital Photoelasticity
,”
Exp. Mech.
,
58
, pp.
1249
1263
.
14.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, pp.
84
106
.
15.
Storåkers
,
B.
, and
Elaguine
,
D.
,
2005
, “
Hertz Contact at Finite Friction and Arbitrary Profiles
,”
J. Mech. Phys. Solids
,
53
(
6
), pp.
1422
1447
.
16.
Sackfield
,
A.
,
Mugadu
,
A.
,
Barber
,
J.
, and
Hills
,
D.
,
2003
, “
The Application of Asymptotic Solutions to Characterising the Process Zone in Almost Complete Frictionless Contacts
,”
J. Mech. Phys. Solids
,
51
(
7
), pp.
1333
1346
.
17.
Mugadu
,
A.
,
Hills
,
D.
,
Barber
,
J.
, and
Sackfield
,
A.
,
2004
, “
The Application of Asymptotic Solutions to Characterising the Process Zone in Almost Complete Frictional Contacts
,”
Int. J. Solids Struct.
,
41
(
2
), pp.
385
397
.
18.
Yang
,
Z.
,
Deng
,
X.
, and
Li
,
Z.
,
2019
, “
Numerical Modeling of Dynamic Frictional Rolling Contact With an Explicit Finite Element Method
,”
Tribol. Int.
,
129
, pp.
214
231
.
19.
Shi
,
X.
,
Zou
,
Y.
, and
Fang
,
H.
,
2016
, “
Numerical Investigation of the Three-Dimensional Elastic–Plastic Sloped Contact Between Two Hemispheric Asperities
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101004
.
20.
Wang
,
P.
,
Becker
,
A. A.
,
Jones
,
I. A.
, and
Hyde
,
T. H.
,
2004
, “
Boundary Element Analysis of Contact Problems Using Inverse Techniques-Linear and Quadratic Elements
,”
J. Strain Anal. Eng. Des.
,
39
(
4
), pp.
371
382
.
21.
Martín
,
D.
, and
Aliabadi
,
M.
,
1998
, “
Boundary Element Analysis of Two-Dimensional Elastoplastic Contact Problems
,”
Eng. Anal. Bound. Elements
,
21
(
4
), pp.
349
360
.
22.
Li
,
S.
,
2015
, “
Effects of Misalignment Error, Tooth Modifications and Transmitted Torque on Tooth Engagements of a Pair of Spur Gears
,”
Mech. Mach. Theory
,
83
, pp.
125
136
. doi.org/10.1016/j.mechmachtheory.2014.09.011
23.
Enblom
,
R.
, and
Berg
,
M.
,
2005
, “
Simulation of Railway Wheel Profile Development Due to Wear–Influence of Disc Braking and Contact Environment
,”
Wear
,
258
(
7
), pp.
1055
1063
, Contact Mechanics and Wear of Rail/Wheel Systems.
24.
Khaja
,
A. A.
, and
Samad
,
W. A.
,
2020
, “
Hybrid Digital Image Correlation
,”
J. Eng. Mech.
,
146
(
4
), p.
04020009
.
25.
Rosakis
,
A.
,
Rubino
,
V.
, and
Lapusta
,
N.
,
2020
, “
Recent Milestones in Unraveling the Full-Field Structure of Dynamic Shear Cracks and Fault Ruptures in Real-Time: From Photoelasticity to Ultrahigh-Speed Digital Image Correlation
,”
ASME J. Appl. Mech.
,
87
(
3
), p.
030801
.
26.
Miao
,
S.
,
Pan
,
P.-Z.
,
Yu
,
P.
,
Zhao
,
S.
, and
Shao
,
C.
,
2020
, “
Fracture Analysis of Beishan Granite After High-Temperature Treatment Using Digital Image Correlation
,”
Eng. Fract. Mech.
,
225
, p.
106847
. doi.org/10.1016/j.engfracmech.2019.106847
27.
Yin
,
Y.
,
Wang
,
M.
,
Gao
,
B. Z.
,
Liu
,
X.
, and
Peng
,
X.
,
2015
, “
Fringe Projection 3D Microscopy With the General Imaging Model
,”
Opt. Express
,
23
(
5
), pp.
6846
6857
.
28.
Liu
,
K.
,
Yao
,
J.
,
Zhou
,
Y.
,
Sun
,
C.
, and
Chen
,
J.
,
2018
, “
Phase-Matching Method Based on Optimization Function for Three-Dimensional Fringe Projection
,”
Opt. Eng.
,
57
(
10
), pp.
1
11
.
29.
Gao
,
C.
,
Gao
,
Z.
,
Niu
,
Y.
,
Wang
,
X.
,
Zhao
,
J.
, and
Deng
,
L.
,
2021
, “
An Improved Large-Field Microscopic Speckle Interferometry System for Dynamic Displacement Measurement of MEMS
,”
Photonics
,
8
(
7
), p.
271
.
30.
Ferretti
,
D.
,
Rossi
,
M.
, and
Royer-Carfagni
,
G.
,
2011
, “
An ESPI Experimental Study on the Phenomenon of Fracture in Glass. Is It Brittle Or Plastic?
,”
J. Mech. Phys. Solids
,
59
(
7
), pp.
1338
1354
.
31.
Park
,
S.
,
Park
,
H.
,
Kim
,
J.
, and
Adeli
,
H.
,
2015
, “
3D Displacement Measurement Model for Health Monitoring of Structures Using a Motion Capture System
,”
Measurement
,
59
, pp.
352
362
.
32.
Zhu
,
K.
,
Guo
,
B.
,
Lu
,
Y.
,
Zhang
,
S.
, and
Tan
,
Y.
,
2017
, “
Single-Spot Two-Dimensional Displacement Measurement Based on Self-Mixing Interferometry
,”
Optica
,
4
(
7
), pp.
729
735
.
33.
Pan
,
B.
,
Asundi
,
A.
,
Xie
,
H.
, and
Gao
,
J.
,
2009
, “
Digital Image Correlation Using Iterative Least Squares and Pointwise Least Squares for Displacement Field and Strain Field Measurements
,”
Opt. Lasers Eng.
,
47
(
7
), pp.
865
874
.
34.
Zhao
,
J.-q.
,
Zeng
,
P.
,
Pan
,
B.
,
Lei
,
L.-p.
,
Du
,
H.-f.
,
He
,
W.-b.
,
Liu
,
Y.
, and
Xu
,
Y.-j.
,
2012
, “
Improved Hermite Finite Element Smoothing Method for Full-Field Strain Measurement Over Arbitrary Region of Interest in Digital Image Correlation
,”
Opt. Lasers Eng.
,
50
(
11
), pp.
1662
1671
.
35.
Li
,
X.
,
Fang
,
G.
,
Zhao
,
J.
,
Zhang
,
Z.
,
Sun
,
L.
,
Wang
,
H.
, and
Wu
,
X.
,
2021
, “
Random Error in Strain Calculation Using Regularized Polynomial Smoothing (RPS) and Point-Wise Least Squares (PLS) in Digital Image Correlation
,”
Opt. Lasers Eng.
,
142
, p.
106590
.
36.
Pan
,
B.
,
Qian
,
K.
,
Xie
,
H.
, and
Asundi
,
A.
,
2009
, “
Two-Dimensional Digital Image Correlation for In-Plane Displacement and Strain Measurement: A Review
,”
Meas. Sci. Technol.
,
20
(
6
), p.
062001
.
37.
Sun
,
C.
,
Zhou
,
Y.
,
Chen
,
J.
, and
Miao
,
H.
,
2015
, “
Measurement of Deformation Close to Contact Interface Using Digital Image Correlation and Image Segmentation
,”
Exp. Mech.
,
55
(
8
), pp.
1525
1536
.
38.
Bai
,
P.
,
Xu
,
Y.
,
Zhu
,
F.
, and
Lei
,
D.
,
2020
, “
A Novel Method to Compensate Systematic Errors Due to Undermatched Shape Functions in Digital Image Correlation
,”
Opt. Lasers Eng.
,
126
, p.
105907
.
39.
Yu
,
L.
, and
Pan
,
B.
,
2015
, “
The Errors in Digital Image Correlation Due to Overmatched Shape Functions
,”
Meas. Sci. Technol.
,
26
(
4
), p.
045202
.
40.
Tits
,
A. L.
,
Wächter
,
A.
,
Bakhtiari
,
S.
,
Urban
,
T. J.
, and
Lawrence
,
C. T.
,
2003
, “
A Primal-Dual Interior-Point Method for Nonlinear Programming With Strong Global and Local Convergence Properties
,”
SIAM J. Optim.
,
14
(
1
), pp.
173
199
.
You do not currently have access to this content.