Abstract

Introducing beads on the fibers is a promising design, which can give rise to enhanced strength and toughness of polymer matrix composites. In this study, we propose a computational model for fracture of the composites with beaded fibers, in which fiber breakage, plastic deformation of polymer matrix, friction between the bead and matrix, geometric interlocking between the bead and matrix, and debonding of the fiber–matrix, bead–matrix and fiber–bead interfaces are accounted for; calculations are carried out for pullout of beadless and beaded fibers embedded in a polymer matrix. It is found that the strength and toughness of the beaded-fiber reinforced composites are controlled by the synergistic interactions of operative mechanisms involved in fiber pullout. Compared with beadless fibers, beaded fibers enable the development of lower levels of stresses at the fiber–matrix and bead–matrix interfaces, retarding interfacial debonding. The presence of beads activates large plastic deformation of the polymer matrix and promotes geometric interlocking and frictional dissipation, giving rise to the simultaneous improvement of strength and toughness of the composites. It is identified that the polymer matrix with enhanced strain hardening spreads plastic deformation in the matrix and promotes stress transfer from the matrix to the fiber, thereby amplifying strength and toughness simultaneously. The fibers–matrix interface with intermediate strength levels leads to weak pullout resistance. In addition, we show that the low coefficient of friction plays a crucial role in promoting stress transfer from the matrix to fiber, thereby increasing the pullout resistance of beaded fibers.

References

1.
Ritchie
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
.
2.
Tanoglu
,
M.
,
McKnight
,
S. H.
,
Palmese
,
G. H.
, and
Gillespie
,
J. W.
, Jr.
,
2001
, “
Effects of Glass-Fiber Sizings on the Strength and Energy Absorption of the Fiber/Matrix Interphase Under High Loading Rates
,”
Compos. Sci. Technol.
,
61
(
2
), pp.
205
220
.
3.
Tsai
,
H. C.
,
Arocho
,
A. M.
, and
Gause
,
L. W.
,
1990
, “
Prediction of Fiber Matrix Interphase Properties and Their Influence on Interface Stress, Displacement and Fracture Toughness of Composite-Material
,”
Mater. Sci. Eng. A
,
126
(
1–2
), pp.
295
304
.
4.
Hardin
,
T. J.
, and
Homer
,
E. R.
,
2015
, “
Microstructural Factors of Strain Delocalization in Model Metallic Glass Matrix Composites
,”
Acta Mater.
,
83
, pp.
203
215
.
5.
Hofmann
,
D. C.
,
Suh
,
J. Y.
,
Wiest
,
A.
,
Duan
,
G.
,
Lind
,
M. L.
,
Demetriou
,
M. D.
, and
Johnson
,
W. L.
,
2008
, “
Designing Metallic Glass Matrix Composites With High Toughness and Tensile Ductility
,”
Nature
,
451
(
7182
), pp.
1085
1089
.
6.
Shete
,
M. K.
,
Dutta
,
T.
,
Singh
,
I.
,
Narasimhan
,
R.
, and
Ramamurty
,
U.
,
2017
, “
Tensile Stress-Strain Response of Metallic Glass Matrix Composites Reinforced With Crystalline Dendrites: Role of Dendrite Morphology
,”
Intermetallics
,
83
, pp.
70
82
.
7.
Naleway
,
S. E.
,
Porter
,
M. M.
,
McKittrick
,
J.
, and
Meyers
,
M. A.
,
2015
, “
Structural Design Elements in Biological Materials: Application to Bioinspiration
,”
Adv. Mater.
,
27
(
37
), pp.
5455
5476
.
8.
Wegst
,
U. G. K.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
9.
An
,
B.
,
Liu
,
Y.
,
Arola
,
D.
, and
Zhang
,
D.
,
2011
, “
Fracture Toughening Mechanism of Cortical Bone: An Experimental and Numerical Approach
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
983
992
.
10.
Depalle
,
B.
,
Qin
,
Z.
,
Shefelbine
,
S. J.
, and
Buehler
,
M. J.
,
2016
, “
Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content
,”
J. Bone Miner. Res.
,
31
(
2
), pp.
380
390
.
11.
Zhai
,
X.
,
Nie
,
Y.
,
Gao
,
J.
,
Kedir
,
N.
,
Claus
,
B.
,
Sun
,
T.
,
Fezzaa
,
K.
, and
Chen
,
W. W.
,
2020
, “
The Effect of Loading Direction on the Fracture Behaviors of Cortical Bone at a Dynamic Loading Rate
,”
J. Mech. Phys. Solids
,
142
, p.
104015
.
12.
Casari
,
D.
,
Michler
,
J.
,
Zysset
,
P.
, and
Schwiedrzik
,
J.
,
2021
, “
Microtensile Properties and Failure Mechanisms of Cortical Bone at the Lamellar Level
,”
Acta Biomater.
,
120
, pp.
135
145
.
13.
Launey
,
M. E.
,
Chen
,
P. Y.
,
McKittrick
,
J.
, and
Ritchie
,
R. O.
,
2010
, “
Mechanistic Aspects of the Fracture Toughness of elk Antler Bone
,”
Acta Biomater.
,
6
(
4
), pp.
1505
1514
.
14.
Schwiedrzik
,
J.
,
Raghavan
,
R.
,
Bürki
,
A.
,
LeNader
,
V.
,
Wolfram
,
U.
,
Michler
,
J.
, and
Zysset
,
P.
,
2014
, “
In Situ Micropillar Compression Reveals Superior Strength and Ductility but an Absence of Damage in Lamellar Bone
,”
Nat. Mater.
,
13
(
7
), pp.
740
747
.
15.
Huang
,
W.
,
Restrepo
,
D.
,
Jung
,
J. Y.
,
Su
,
F. Y.
,
Liu
,
Z.
,
Ritchie
,
R. O.
,
Mckittrick
,
J.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2019
, “
Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs
,”
Adv. Mater.
,
31
(
43
), p.
1901561
.
16.
Yao
,
H.
, and
Gao
,
H.
,
2007
, “
Multi-scale Cohesive Laws in Hierarchical Materials
,”
Int. J. Solids Struct.
,
44
(
25–26
), pp.
8177
8193
.
17.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.
18.
Zhang
,
Z.
,
Zhang
,
Y. W.
, and
Gao
,
H.
,
2011
, “
On Optimal Hierarchy of Load-Bearing Biological Materials
,”
Proc. R. Soc. B
,
278
(
1705
), pp.
519
525
.
19.
De Falco
,
P.
,
Barbieri
,
E.
,
Pugno
,
N.
, and
Gupta
,
H. S.
,
2017
, “
Staggered Fibrils and Damageable Interfaces Lead Concurrently and Independently to Hysteretic Energy Absorption and Inhomogeneous Strain Fields in Cyclically Loaded Antler Bone
,”
ACS Biomater. Sci. Eng.
,
3
(
11
), pp.
2779
2787
.
20.
Fratzl
,
P.
,
Burgert
,
I.
, and
Gupta
,
H. S.
,
2004
, “
On the Role of Interface Polymers for the Mechanics of Natural Polymeric Composites
,”
Phys. Chem. Chem. Phys.
,
6
(
24
), pp.
5575
5579
.
21.
Li
,
Y.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2011
, “
Stiffness and Strength of Suture Joints in Nature
,”
Phys. Rev. E
,
84
(
6
), p.
062904
.
22.
Li
,
Y.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2012
, “
Bioinspired, Mechanical, Deterministic Fractal Model for Hierarchical Suture Joints
,”
Phys. Rev. E
,
85
(
3
), p.
031901
.
23.
Humburg
,
H.
,
Zhu
,
D.
,
Beznia
,
S.
, and
Barthelat
,
F.
,
2012
, “
Bio-inspired Tapered Fibers for Composites With Superior Toughness
,”
Compos. Sci. Technol.
,
72
(
9
), pp.
1012
1019
.
24.
Zhang
,
Y.
,
Yao
,
H.
,
Ortiz
,
C.
,
Xu
,
J.
, and
Dao
,
M.
,
2012
, “
Bio-inspired Interfacial Strengthening Strategy Through Geometrically Interlocking Designs
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
70
77
.
25.
Espinosa
,
H. D.
,
Juster
,
A. L.
,
Latourte
,
F. J.
,
Loh
,
O. Y.
,
Gregoire
,
D.
, and
Zavattieri
,
P. D.
,
2011
, “
Tablet-Level Origin of Toughening in Abalone Shells and Translation to Synthetic Composite Materials
,”
Nat. Commun.
,
2
(
1
), p.
173
.
26.
Malik
,
I. A.
,
Mirkhalaf
,
M.
, and
Barthelat
,
F.
,
2017
, “
Bio-inspired “Jigsaw”-Like Interlocking Sutures: Modeling, Optimization, 3D Printing and Testing
,”
J. Mech. Phys. Solids
,
102
, pp.
224
238
.
27.
Greenfeld
,
I.
,
Zhang
,
W.
,
Sui
,
X. M.
, and
Wagner
,
H. D.
,
2018
, “
Intermittent Beading in Fiber Composites
,”
Compos. Sci. Technol.
,
160
, pp.
21
31
.
28.
Rodricks
,
C. W.
,
Greenfeld
,
I.
, and
Wagner
,
H. D.
,
2021
, “
Polymer Beads as Interfacial Obstacles in Fibre Composites
,”
Compos. Sci. Technol.
,
210
, p.
108793
.
29.
Greenfeld
,
I.
,
Rodricks
,
C. W.
,
Sui
,
X. M.
, and
Wagner
,
H. D.
,
2019
, “
Beaded Fiber Composites—Stiffness and Strength Modeling
,”
J. Mech. Phys. Solids
,
125
, pp.
384
400
.
30.
Needleman
,
A.
,
Borders
,
T. L.
,
Brinson
,
L. C.
,
Flores
,
V. M.
, and
Schadler
,
L. S.
,
2010
, “
Effect of an Interphase Region on Debonding of a CNT Reinforced Polymer Composite
,”
Compos. Sci. Technol.
,
70
(
15
), pp.
2207
2215
.
31.
Newcomb
,
B. A.
,
Chae
,
H. G.
,
Gulgunje
,
P. V.
,
Gupta
,
K.
,
Liu
,
Y.
,
Tsentalovich
,
D. E.
,
Pasquali
,
M.
, and
Kumar
,
S.
,
2014
, “
Stress Transfer in Polyacrylonitrile/Carbon Nanotube Composite Fibers
,”
Polymer
,
55
(
11
), pp.
2734
2743
.
32.
Wang
,
L.
, and
Boyce
,
M. C.
,
2010
, “
Bioinspired Structural Material Exhibiting Post-yield Lateral Expansion and Volumetric Energy Dissipation During Tension
,”
Adv. Funct. Mater.
,
20
(
18
), pp.
3025
3030
.
33.
Tvergaard
,
V.
, and
Needleman
,
A.
,
2011
, “
Polymer Indentation: Numerical Analysis and Comparison With a Spherical Cavity Model
,”
J. Mech. Phys. Solids.
,
59
(
9
), pp.
1669
1684
.
34.
Tvergaard
,
V.
, and
Needleman
,
A.
,
2016
, “
Indentation of Pressurized Viscoplastic Polymer Spherical Shells
,”
J. Mech. Phys. Solids
,
93
, pp.
16
33
.
35.
Cheng
,
L.
, and
Guo
,
T. F.
,
2007
, “
Void Interaction and Coalescence in Polymeric Materials
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1787
1808
.
36.
Gearing
,
B. P.
, and
Anand
,
L.
,
2004
, “
Notch-Sensitive Fracture of Polycarbonate
,”
Int. J. Solids Struct.
,
41
(
3–4
), pp.
827
845
.
37.
An
,
B.
, and
Wagner
,
H. D.
,
2016
, “
Role of Microstructure on Fracture of Dentin
,”
J. Mech. Behav. Biomed. Mater.
,
59
, pp.
527
537
.
38.
Xu
,
M.
, and
An
,
B.
,
2020
, “
An Analysis of Fracture in Staggered Mineralized Collagen Fibril Arrays
,”
Int. J. Solids Struct.
,
193–194
, pp.
535
549
.
39.
Parmigiani
,
J. P.
, and
Thouless
,
M. D.
,
2006
, “
The Roles of Toughness and Cohesive Strength on Crack Deflection at Interfaces
,”
J. Mech. Phys. Solids
,
54
(
2
), pp.
266
287
.
40.
Vajari
,
D. A.
,
Gonzalez
,
C.
,
Llorca
,
J.
, and
Legarth
,
B. N.
,
2014
, “
A Numerical Study of the Influence of Microvoids in the Transverse Mechanical Response of Unidirectional Composites
,”
Compos. Sci. Technol.
,
97
, pp.
46
54
.
41.
Xu
,
M.
, and
An
,
B.
,
2022
, “
Plastic Deformation of Polymer Matrix Composites Reinforced With Beaded Fibers
,”
Int. J. Solids Struct.
,
256
, p.
111985
.
42.
Tvergaard
,
V.
, and
Needleman
,
A.
,
2004
, “
3D Analyses of the Effect of Weld Orientation in Charpy Specimens
,”
Eng. Fract. Mech.
,
71
(
15
), pp.
2179
2195
.
43.
Belytschko
,
T.
,
Chiapetta
,
R. L.
, and
Bartel
,
H. D.
,
1976
, “
Efficient Large Scale Non-linear Transient Analysis by Finite Elements
,”
Int. J. Numer. Methods Eng.
,
10
(
3
), pp.
579
596
.
44.
Tvergaard
,
V.
,
1982
, “
Influence of Void Nucleation on Ductile Shear Fracture at a Free Surface
,”
J. Mech. Phys. Solids
,
30
(
6
), pp.
399
425
.
45.
Tvergaard
,
V.
, and
Needleman
,
A.
,
2012
, “
Effect of Viscoplastic Material Parameters on Polymer Indentation
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
6
), p.
065002
.
46.
Safaei
,
M.
,
Sheidaei
,
A.
,
Baniassadi
,
M.
,
Ahzi
,
S.
,
Mashhadi
,
M. M.
, and
Pourboghrat
,
F.
,
2015
, “
An Interfacial Debonding-Induced Damage Model for Graphite Nanoplatelet Polymer Composites
,”
Comput. Mater. Sci.
,
96
, pp.
191
199
.
47.
An
,
B.
, and
Li
,
Y.
,
2021
, “
Role of Strain Rate Sensitivity of Extrafibrillar Matrix on Fracture in Mineralized Collagen Fibril Arrays
,”
Eng. Fract. Mech.
,
245
, p.
107592
.
You do not currently have access to this content.