Abstract

The determination of the mechanical response of engineering materials subjected to high loading rates plays an important role in determining their performance and application. The high strain-rate tensile response of metals is usually investigated by means of the split-Hopkinson tension bar (SHTB) apparatus. The interpretation of the obtained results is, however, subjected to analogous stress and strain uniformity challenges present during quasi-static tensile experiments. Beyond the onset of necking, strains cease to be uniform along the gauge length and localize around the necking zone. Consequently, the nominal strain rate underestimates the effective strain rate experienced by the material. The analysis of the effective strain rate and stress state beyond the onset of necking has received considerable attention in the literature. Several research efforts have focused on the optimization of the geometry of specimens to be employed for the characterization of the dynamic tensile response using the SHTB. The present work investigates, systematically, the effects of strain history and adiabatic heating on the stress state during dynamic loading. A series of monotonic and various strain history experiments were conducted and analyzed. The diameter evolution, effective strain rate, and temperature histories were measured for all conducted experiments. Numerical simulations were carried out to examine the stress state during strain localization and to accurately reproduce engineering and local thermos-mechanical variables. The effectiveness of existing postnecking corrections for high-rate experiments is assessed. A modified postnecking correlation taking into account the effects of adiabatically induced thermal softening is proposed.

References

1.
Tuninetti
,
V.
, and
Habraken
,
A. M.
,
2014
, “
Impact of Anisotropy and Viscosity to Model the Mechanical Behavior of Ti–6Al–4V Alloy
,”
Mater. Sci. Eng. A
,
605
, pp.
39
50
.
2.
Gilles
,
G.
,
Hammami
,
W.
,
Libertiaux
,
V.
,
Cazacu
,
O.
,
Yoon
,
J. H.
,
Kuwabara
,
T.
,
Habraken
,
A. M.
, and
Duchêne
,
L.
,
2011
, “
Experimental Characterization and Elasto-Plastic Modeling of the Quasi-Static Mechanical Response of TA-6V at Room Temperature
,”
Int. J. Solids Struct.
,
48
(
9
), pp.
1277
1289
.
3.
Sneddon
,
S.
,
Xu
,
Y.
,
Dixon
,
M.
,
Rugg
,
D.
,
Li
,
P.
, and
Mulvihill
,
D. M.
,
2021
, “
Sensitivity of Material Failure to Surface Roughness: A Study on Titanium Alloys Ti64 and Ti407
,”
Mater. Des.
,
200
, p.
109438
.
4.
Zhang
,
L.
,
Gour
,
G.
,
Petrinic
,
N.
, and
Pellegrino
,
A.
,
2020
, “
Rate Dependent Behaviour and Dynamic Strain Localisation of Three Novel Impact Resilient Titanium Alloys: Experiments and Modelling
,”
Mater. Sci. Eng. A
,
771
, p.
138552
.
5.
James
,
S.
,
2016
, “
Timetal® 407: A Titanium Alloy to Enable Cost Reduction
,”
Proceedings of the 13th World Conference on Titanium
,
Wiley Online Library
.
6.
Davey
,
W.
,
2018
, “
Fatigue Performance of the Novel Titanium Alloy Timetal 407
,”
MATEC Web Conference
,
Poitiers Futuroscope, France
,
May 27–June 1
, Vol. 165, p.
04001
.
7.
Mirone
,
G.
,
2013
, “
The Dynamic Effect of Necking in Hopkinson Bar Tension Tests
,”
Mech. Mater.
,
58
, pp.
84
96
.
8.
Mirone
,
G.
,
Corallo
,
D.
, and
Barbagallo
,
R.
,
2017
, “
Experimental Issues in Tensile Hopkinson Bar Testing and a Model of Dynamic Hardening
,”
Int. J. Impact Eng.
,
103
, pp.
180
194
.
9.
Gray
, III,
G. T.
,
2000
, Classic Split Hopkinson Pressure Bar Testing,”
ASM Handbook (Mechanical Testing and Evaluation, Vol. 8)
,
H.
Kuhn
and
D.
Medlin
, eds.,
ASM International
,
Materials Park, OH
, pp.
462
476
.
10.
Arthington
,
M. R.
,
Siviour
,
C. R.
, and
Petrinic
,
N.
,
2012
, “
Improved Materials Characterisation Through the Application of Geometry Reconstruction to Quasi-Static and High-Strain-Rate Tension Tests
,”
Int. J. Impact Eng.
,
46
, pp.
86
96
.
11.
Kapoor
,
R.
, and
Nemat-Nasser
,
S.
,
1998
, “
Determination of Temperature Rise During High Strain Rate Deformation
,”
Mech. Mater.
,
27
(
1
), pp.
1
12
.
12.
Macdougall
,
D.
, and
Harding
,
J. J.
,
1998
, “
The Measurement of Specimen Surface Temperature in High-Speed Tension and Torsion Tests
,”
Int. J. Impact Eng.
,
21
(
6
), pp.
473
488
.
13.
Macdougall
,
D.
,
2000
, “
Determination of the Plastic Work Converted to Heat Using Radiometry
,”
Exp. Mech.
,
40
(
3
), pp.
298
306
.
14.
Noble
,
J. P.
, and
Harding
,
J.
,
1994
, “
Temperature Measurement in the Tensile Hopkinson Bar Test
,”
Meas. Sci. Technol.
,
5
(
9
), pp.
1163
1171
.
15.
Ranc
,
N.
,
Taravella
,
L.
,
Pina
,
V.
, and
Herve
,
P.
,
2008
, “
Temperature Field Measurement in Titanium Alloy During High Strain Rate Loading—Adiabatic Shear Bands Phenomenon
,”
Mech. Mater.
,
40
(
4
), pp.
255
270
.
16.
Soares
,
G. C.
,
Vázquez-Fernández
,
N. I.
, and
Hokka
,
M.
,
2022
, “9—Simultaneous Full-Field Strain and Temperature Measurements in High Strain Rate Testing,”
Advances in Experimental Impact Mechanics
,
B.
Song
, ed.,
Elsevier
,
New York
. pp.
255
285
.
17.
Varga
,
J.
, and
Kingstedt
,
O. T.
,
2021
, “
An Investigation of the Plastic Work to Heat Conversion of Wrought and Laser Powder Bed Fusion Manufactured Inconel 718
,”
Addit. Manuf.
,
46
, p.
102179
.
18.
Soares
,
G.
, and
Hokka
,
M.
,
2021
, “
The Taylor–Quinney Coefficients and Strain Hardening of Commercially Pure Titanium, Iron, Copper, and Tin in High Rate Compression
,”
Int. J. Impact Eng.
,
156
, p.
103940
.
19.
Vazquez-Fernandez
,
N. I.
,
Soares
,
G. C.
,
Smith
,
J. L.
,
Seidt
,
J. D.
,
Isakov
,
M.
,
Gilat
,
A.
,
Kuokkala
,
V. T.
, and
Hokka
,
M.
,
2019
, “
Adiabatic Heating of Austenitic Stainless Steels at Different Strain Rates
,”
J. Dyn. Behav. Mater.
,
5
(
3
), pp.
221
229
.
20.
Shamchi
,
S. P.
,
Queirós de Melo
,
F. J. M.
,
Tavares
,
P. J.
, and
Moreira
,
P. M. G. P.
,
2019
, “
Thermomechanical Characterization of Alclad AA2024-T3 Aluminum Alloy Using Split Hopkinson Tension Bar
,”
Mech. Mater.
,
139
, p.
103198
.
21.
Rittel
,
D.
,
Zhang
,
L.
, and
Osovski
,
S.
,
2017
, “
The Dependence of the Taylor–Quinney Coefficient on the Dynamic Loading Mode
,”
J. Mech. Phys. Solids
,
107
, pp.
96
114
.
22.
Zaera
,
R.
,
Rodríguez-Martínez
,
J. A.
, and
Rittel
,
D.
,
2013
, “
On the Taylor–Quinney Coefficient in Dynamically Phase Transforming Materials. Application to 304 Stainless Steel
,”
Int. J. Plast.
,
40
, pp.
185
201
.
23.
Mirone
,
G.
,
Barbagallo
,
R.
, and
Giudice
,
F.
,
2019
, “
Locking of the Strain Rate Effect in Hopkinson Bar Testing of a Mild Steel
,”
Int. J. Impact Eng.
,
130
, pp.
97
112
.
24.
Li
,
W.
,
Yamasaki
,
S.
,
Mitsuhara
,
M.
, and
Nakashima
,
H.
,
2020
, “
In Situ EBSD Study of Deformation Behavior of Primary α Phase in a Bimodal Ti–6Al–4V Alloy During Uniaxial Tensile Tests
,”
Mater. Charact.
,
163
, p.
110282
.
25.
Bodunrin
,
M. O.
,
Chown
,
L. H.
,
van der Merwe
,
J. W.
, and
Alaneme
,
K. K.
,
2019
, “
Hot Working of Ti–6Al–4V With a Complex Initial Microstructure
,”
Int. J. Mater. Form.
,
12
(
5
), pp.
857
874
.
26.
Momeni
,
A.
,
Abbasi
,
S. M.
, and
Sadeghpour
,
S.
,
2019
, “
A Comparative Study on the Hot Deformation Behavior of Ti5Al5Mo5V3Cr and Newly Developed Ti4Al7Mo3V3Cr Alloys
,”
Vacuum
,
161
, pp.
410
418
.
27.
Li
,
J.
,
Zhang
,
P.
,
Lu
,
L.
,
Lv
,
F.
,
Miao
,
X.-T.
,
Chang
,
L.
,
Zhou
,
B.-B.
,
He
,
X.-H.
, and
Zhou
,
C.-Y.
,
2018
, “
Effect of Pre-strain on Fatigue Crack Growth Behavior for Commercial Pure Titanium at Ambient Temperature
,”
Int. J. Fatigue
,
117
, pp.
27
38
.
28.
Lanning
,
D. B.
,
Nicholas
,
T.
, and
Haritos
,
G. K.
,
2002
, “
Effect of Plastic Prestrain on High Cycle Fatigue of Ti–6Al–4V
,”
Mech. Mater.
,
34
(
2
), pp.
127
134
.
29.
Bridgman
,
P.
,
1944
, “
The Stress Distribution at the Neck of a Tension Specimen a Tension Specimen
,”
Trans. ASM
,
32
, pp.
553
574
.
30.
La Rosa
,
G.
,
Mirone
,
G.
, and
Risitano
,
A.
,
2001
, “
Effect of Stress Triaxiality Corrected Plastic Flow on Ductile Damage Evolution in the Framework of Continuum Damage Mechanics
,”
Eng. Fract. Mech.
,
68
(
4
), pp.
417
434
.
31.
Mirone
,
G.
,
2004
, “
A New Model for the Elastoplastic Characterization and the Stress–Strain Determination on the Necking Section of a Tensile Specimen
,”
Int. J. Solids Struct.
,
41
(
13
), pp.
3545
3564
.
32.
Gromada
,
M.
,
Mishuris
,
G.
, and
Öchsner
,
A.
,
2007
, “
An Attempt to Improve the Evaluation of Mechanical Material Properties From the Axisymmetric Tensile Test
,”
Isr. J. Chem.
,
47
(
3–4
), pp.
329
335
.
33.
Mirone
,
G.
,
2007
, “
Role of Stress Triaxiality in Elastoplastic Characterization and Ductile Failure Prediction
,”
Eng. Fract. Mech.
,
74
(
8
), pp.
1203
1221
.
34.
Bai
,
Y.
,
Teng
,
X.
, and
Wierzbicki
,
T.
,
2009
, “
On the Application of Stress Triaxiality Formula for Plane Strain Fracture Testing
,”
ASME J. Eng. Mater. Technol.
,
131
(
2
), p.
021002
.
35.
Gromada
,
M.
,
Mishuris
,
G.
, and
Ochsner
,
A.
,
2010
, “
On the Evaluation of Mechanical Properties From the Axisymmetric Tensile Test
,”
Arch. Metall. Mater.
,
55
(
1
), pp.
295
300
. http://imim.pl/files/archiwum/Vol1_2010/38.pdf
36.
Gromada
,
M.
,
Mishuris
,
G.
, and
Öchsner
,
A.
,
2011
,
Correction Formulae for the Stress Distribution in Round Tensile Specimens at Neck Presence
,
Springer Science & Business Media
,
Springer Berlin/Heidelberg, Alemania
.
37.
Murata
,
M.
,
Yoshida
,
Y.
, and
Nishiwaki
,
T.
,
2018
, “
Stress Correction Method for Flow Stress Identification by Tensile Test Using Notched Round Bar
,”
J. Mater. Process. Technol.
,
251
, pp.
65
72
.
38.
Quino
,
G.
,
Chen
,
Y.
,
Ramakrishnan
,
K. R.
,
Martínez-Hergueta
,
F.
,
Zumpano
,
G.
,
Pellegrino
,
A.
, and
Petrinic
,
N.
,
2020
, “
Speckle Patterns for DIC in Challenging Scenarios: Rapid Application and Impact Endurance
,”
Meas. Sci. Technol.
,
32
(
1
), p.
015203
.
39.
Pan
,
B.
,
Lu
,
Z.
, and
Xie
,
H.
,
2010
, “
Mean Intensity Gradient: An Effective Global Parameter for Quality Assessment of the Speckle Patterns Used in Digital Image Correlation
,”
Opt. Lasers Eng.
,
48
(
4
), pp.
469
477
.
40.
Gerlach
,
R.
,
Kettenbeil
,
C.
, and
Petrinic
,
N.
,
2012
, “
A New Split Hopkinson Tensile Bar Design
,”
Int. J. Impact Eng.
,
50
, pp.
63
67
.
41.
Pantleon
,
W.
,
Francke
,
D.
, and
Klimanek
,
P.
,
1996
, “
Modelling Adiabatic Heating During High-Speed Deformation
,”
Comput. Mater. Sci.
,
7
(
1
), pp.
75
81
.
42.
Soares
,
G. C.
,
Patnamsetty
,
M.
,
Peura
,
P.
, and
Hokka
,
M.
,
2019
, “
Effects of Adiabatic Heating and Strain Rate on the Dynamic Response of a CoCrFeMnNi High-Entropy Alloy
,”
J. Dyn. Behav. Mater.
,
5
(
3
), pp.
320
330
.
43.
Che-Haron
,
C. H.
, and
Jawaid
,
A.
,
2005
, “
The Effect of Machining on Surface Integrity of Titanium Alloy Ti–6% Al–4% V
,”
J. Mater. Process. Technol.
,
166
(
2
), pp.
188
192
.
44.
Duarte Filho
,
L. A.
, and
Awruch
,
A. M.
,
2004
, “
Geometrically Nonlinear Static and Dynamic Analysis of Shells and Plates Using the Eight-Node Hexahedral Element With One-Point Quadrature
,”
Finite Elem. Anal. Des.
,
40
(
11
), pp.
1297
1315
.
45.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Materials Subjected to Large Strains, High Strain Rates, and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr. 19–21
, pp.
541
547
.
46.
Vázquez-Fernández
,
N. I.
,
Nyyssönen
,
T.
,
Isakov
,
M.
,
Hokka
,
M.
, and
Kuokkala
,
V.-T.
,
2019
, “
Uncoupling the Effects of Strain Rate and Adiabatic Heating on Strain Induced Martensitic Phase Transformations in a Metastable Austenitic Steel
,”
Acta Mater.
,
176
, pp.
134
144
.
47.
Farren
,
W. S.
, and
Taylor
,
G. I.
,
1925
, “
The Heat Developed During Plastic Extension of Metals
,”
Proc. R. Soc. Lond. Ser. A
,
107
(
743
), pp.
422
451
.
48.
Taylor
,
G. I.
, and
Quinney
,
H.
,
1934
, “
The Latent Energy Remaining in a Metal After Cold Working
,”
Proc. R. Soc. Lond. Ser. A
,
143
(
849
), pp.
307
326
.
49.
Rittel
,
D.
,
1999
, “
On the Conversion of Plastic Work to Heat During High Strain Rate Deformation of Glassy Polymers
,”
Mech. Mater.
,
31
(
2
), pp.
131
139
.
50.
Benson
,
D. J.
,
2002
, “
On the Application of LS-OPT to Identify Non-linear Material Models in LS-DYNA
,”
Seventh International LS-DYNA Users Conference
,
Dearborn, MI
,
May 19–21
.
51.
Müllerschön
,
H.
,
2001
, “
The Identification of Rate-Dependent Material Properties in Foams Using LS-OPT
,”
Third European LS-DYNA Users Conference
,
Paris, France
,
June 18–19
.
52.
Williams
,
G. L. J. C.
,
2003
,
Titanium
,
Springer
,
Berlin
.
53.
Welsch
,
G.
,
Boyer
,
R.
, and
Collings
,
E.
,
1993
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Materials Park, OH
.
54.
Needleman
,
A.
,
1972
, “
A Numerical Study of Necking in Circular Cylindrical Bar
,”
J. Mech. Phys. Solids
,
20
(
2
), pp.
111
127
.
55.
Cabezas
,
E. E.
, and
Celentano
,
D. J.
,
2004
, “
Experimental and Numerical Analysis of the Tensile Test Using Sheet Specimens
,”
Finite Elem. Anal. Des.
,
40
(
5–6
), pp.
555
575
.
56.
Lu
,
F.
,
Mánik
,
T.
, and
Holmedal
,
B.
,
2021
, “
Stress Corrections After Necking Using a Two-Parameter Equation for the Radius of Curvature
,”
ASME J. Appl. Mech.
,
88
(
6
), p.
061006
.
57.
Le Roy
,
G.
,
Embury
,
J. D.
,
Edwards
,
G.
, and
Ashby
,
M. F.
,
1981
, “
A Model of Ductile Fracture Based on the Nucleation and Growth of Voids
,”
Acta Metall.
,
29
(
8
), pp.
1509
1522
.
58.
Zhang
,
L.
,
Pellegrino
,
A.
,
Townsend
,
D.
, and
Petrinic
,
N.
,
2020
, “
Strain Rate and Temperature Dependent Strain Localization of a Near α Titanium Alloy
,”
Int. J. Impact Eng.
,
145
, p.
103676
.
You do not currently have access to this content.