Abstract

Many engineering materials are made from fibers, and fibrous assemblies are often compacted during the fabrication process. Compression leads to the formation of contacts between fibers, and this causes stiffening. The relation between the uniaxial stress, S, and the volume fraction of fibers, φ, is of power law form. The derivation of this relation based on micromechanics considerations takes as input the structural evolution represented by the dependence of the mean segment length of the network, lc, on the current density, ρ (ρ is defined as the total length of fiber per unit volume of the network). In this work, we revisit this problem while considering that the mean segment length should be defined exclusively by fiber contacts that transmit load. We use numerical simulations of the compression of crimped fiber assemblies to show that, when using this definition, ρ1/lc2 at large enough strains. Purely geometric considerations require that ρ1/lc, and we observe that this applies in the early stages of compaction. In pre-stressed networks, the density–mean segment length scaling is of the form ρ1/lc2 at all strains. This has implications for the relation between stress and the fiber volume fraction. For both ρ versus lc scalings, S(φnφ0n), where φ0 is the initial or reference fiber volume fraction; however, n = 3 when ρ1/lc and n = 2 for ρ1/lc2. These predictions are compared with experimental data from the literature.

References

1.
Picu
,
C. R.
,
2022
,
Network Materials: Structure and Properties
,
Cambridge University Press
,
Cambridge
.
2.
Kallmes
,
O.
, and
Corte
,
H.
,
1960
, “
The Structure of Paper, I. The Statistical Geometry of an Ideal Two Dimensional Fiber Network
,”
Tappi J.
,
43
(
9
), pp.
737
752
.
3.
van Dillen
,
T.
,
Onck
,
P. R.
, and
van der Giessen
,
E.
,
2008
, “
Models for Stiffening in Cross-Linked Biopolymer Networks: A Comparative Study
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2240
2264
.
4.
Alava
,
M.
, and
Niskanen
,
K.
,
2006
, “
The Physics of Paper
,”
Rep. Prog. Phys.
,
69
(
3
), pp.
669
723
.
5.
Dodson
,
C.
,
1996
, “
Fiber Crowding, Fiber Contacts, and Fiber Flocculation
,”
Tappi J.
,
79
(
9
), pp.
211
216
.
6.
Philipse
,
A. P.
,
1996
, “
The Random Contact Equation and Its Implications for (Colloidal) Rods in Packings, Suspensions, and Anisotropic Powders
,”
Langmuir
,
12
(
5
), pp.
1127
1133
.
7.
Toll
,
S.
,
1993
, “
Note: On the Tube Model for Fibre Suspensions
,”
J. Rheol.
,
37
(
1
), pp.
123
125
.
8.
Komori
,
T.
, and
Makishima
,
K.
,
1977
, “
Numbers of Fiber-to-Fiber Contacts in General Fiber Assemblies
,”
Text. Res. J.
,
47
(
1
), pp.
13
17
.
9.
Yi
,
Y. B.
,
Berhan
,
L.
, and
Sastry
,
A. M.
,
2004
, “
Statistical Geometry of Random Fibrous Networks, Revisited: Waviness, Dimensionality, and Percolation
,”
J. Appl. Phys.
,
96
(
3
), p.
1318
.
10.
Negi
,
V.
, and
Picu
,
R. C.
,
2019
, “
Mechanical Behavior of Nonwoven Non-Crosslinked Fibrous Mats With Adhesion and Friction
,”
Soft Matter
,
15
(
29
), pp.
5951
5964
.
11.
Flory
,
P. J.
,
1969
,
Statistical Mechanics of Chain Molecules
,
Interscience Publishers
.
12.
Fetters
,
L. J.
,
Hadjichristidis
,
N.
,
Lindner
,
J. S.
, and
Mays
,
J. W.
,
1994
, “
Molecular Weight Dependence of Hydrodynamic and Thermodynamic Properties for Well-Defined Linear Polymers in Solution
,”
J. Phys. Chem. Ref. Data
,
23
(
4
), pp.
619
640
.
13.
van Wyk
,
C. M.
,
1946
, “
Note on the Compressibility of Wool
,”
J. Textile Inst.
,
37
(
12
), pp.
T285
T292
.
14.
Toll
,
S.
, and
Manson
,
J. A. E.
,
1995
, “
Elastic Compression of a Fiber Network
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
223
226
.
15.
Toll
,
S.
,
1998
, “
Packing Mechanics of Fiber Reinforcements
,”
Polym. Eng. Sci.
,
38
(
8
), pp.
1337
1350
.
16.
Schellman
,
J. A.
,
1974
, “
Flexibility of DNA
,”
Biopolymers
,
13
(
1
), pp.
217
226
.
17.
Mezeix
,
L.
,
Bouvet
,
C.
,
Huez
,
J.
, and
Poquillon
,
D.
,
2009
, “
Mechanical Behavior of Entangled Fibers and Entangled Cross-Linked Fibers During Compression
,”
J. Mater. Sci.
,
44
(
14
), pp.
3652
3661
.
18.
Baudequin
,
M.
,
Ryschenkow
,
G.
, and
Roux
,
S.
,
1999
, “
Non-Linear Elastic Behavior of Light Fibrous Materials
,”
Eur. Phys. J. B
,
12
(
1
), pp.
157
162
.
19.
Alkhagen
,
M.
, and
Toll
,
S.
,
2007
, “
Micromechanics of a Compressed Fiber Mass
,”
J. Appl. Mech.
,
74
(
4
), pp.
723
731
.
20.
Baljasov
,
P. D.
,
1976
,
Compression of Textile Fibers in Mass and Technology of Textile Manufacture
,
Legkaya promyshlennost
,
Moscow
.
21.
Neckar
,
B.
, and
Das
,
D.
,
2012
,
Theory of Structure and Mechanics of Fibrous Assemblies
,
Woodhead Pub
,
India
.
22.
Abd El-Rahman
,
A. I.
, and
Tucker
,
C. L.
,
2013
, “
Mechanics of Random Discontinuous Long-Fiber Thermoplastics. Part II: Direct Simulation of Uniaxial Compression
,”
J. Rheol.
,
57
(
5
), pp.
1463
1489
.
23.
Subramanian
,
G.
, and
Picu
,
C. R.
,
2011
, “
Mechanics of Three-Dimensional, Nonbonded Random Fiber Networks
,”
Phys. Rev. E
,
83
(
5
), p.
056120
.
24.
Barbier
,
C.
,
Dendievel
,
R.
, and
Rodney
,
D.
,
2009
, “
Role of Friction in the Mechanics of Nonbonded Fibrous Materials
,”
Phys. Rev. E Stat. Nonlin. Soft Matter. Phys.
,
80
(
1
), p.
016115
.
25.
Durville
,
D.
,
2005
, “
Numerical Simulation of Entangled Materials Mechanical Properties
,”
J. Mater. Sci.
,
40
(
22
), pp.
5941
5948
.
26.
Beil
,
N. B.
, and
Roberts
,
W. W.
,
2002
, “
Modeling and Computer Simulation of the Compressional Behavior of Fiber Assemblies
,”
Text. Res. J.
,
72
(
4
), pp.
341
351
.
27.
Poquillon
,
D.
,
Viguier
,
B.
, and
Andrieu
,
E
,
2005
, “
Experimental Data About Mechanical Behaviour During Compression Tests for Various Matted Fibres
,”
J. Mater. Sci.
,
40
(
22
), pp.
5963
5970
.
You do not currently have access to this content.