Abstract

A bistable curved beam with magnetic-torque-driven actuation has the potential for fast and untethered reconfiguration of metamaterials. However, there is currently no modeling method for a bistable curved beam for which the instability is coupled with an external magnetic field for the design of active metamaterials. The second-mode (S-shape) generation of a bistable curved beam is essential for a multimodal and multistep reconfiguration of metamaterials and has not yet been explored. Herein, we aim to construct an analytical model of the deformation of a bistable curved beam triggered by an external magnetic field, providing magnetic-torque-driven multimodal and multistep deformations. We also implement symmetric and asymmetric magnet arrangements to the model to enable variation of the external magnetic fields to identify the range of the magnetic field’s direction on the bistable and doubly curved transformations. Our instability model coupled with a magnetic field predicts multimodal and multistep deformations of bistable curved beams with magnetic torques triggered by the orientation and magnitude of the magnetic field. Our model reveals that (i) a bistable curved beam without prestressing and (ii) the asymmetric magnet arrangement design are favorable for generating an extensive range of the S-shape, which is significant for the design of multimodal transformation of metamaterials.

References

1.
Boley
,
J. W.
,
van Rees
,
W. M.
,
Lissandrello
,
C.
,
Horenstein
,
M. N.
,
Truby
,
R. L.
,
Kotikian
,
A.
,
Lewis
,
J. A.
, and
Mahadevan
,
L.
,
2019
, “
Shape-Shifting Structured Lattices via Multimaterial 4D Printing
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
42
), pp.
20856
20862
.
2.
Kotikian
,
A.
,
Truby
,
R. L.
,
Boley
,
J. W.
,
White
,
T. J.
, and
Lewis
,
J. A.
,
2018
, “
3D Printing of Liquid Crystal Elastomeric Actuators With Spatially Programed Nematic Order
,”
Adv. Mater.
,
30
(
10
), p.
1706164
.
3.
Song
,
C.
,
Zou
,
B.
,
Cui
,
Z.
,
Liang
,
Z.
, and
Ju
,
J.
,
2021
, “
Thermomechanically Triggered Reversible Multi-transformability of a Single Material System by Energy Swapping and Shape Memory Effects
,”
Adv. Funct. Mater.
,
31
(
32
), p.
2101395
.
4.
Song
,
C.
, and
Ju
,
J.
,
2020
, “
Reconfigurable Mesostructures With Prestressing, Reverse Stiffness and Shape Memory Effects
,”
Extreme Mech. Lett.
,
35
, p.
100625
.
5.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
6.
Alapan
,
Y.
,
Karacakol
,
A. C.
,
Guzelhan
,
S. N.
,
Isik
,
I.
, and
Sitti
,
M.
,
2020
, “
Reprogrammable Shape Morphing of Magnetic Soft Machines
,”
Sci. Adv.
,
6
(
38
), p.
eabc6414
.
7.
Yang
,
H.
,
Leow
,
W. R.
,
Wang
,
T.
,
Wang
,
J.
,
Yu
,
J.
,
He
,
K.
,
Qi
,
D.
,
Wan
,
C.
, and
Chen
,
X.
,
2017
, “
3D Printed Photoresponsive Devices Based on Shape Memory Composites
,”
Adv. Mater.
,
29
(
33
), p.
1701627
.
8.
Sydney Gladman
,
A.
,
Matsumoto
,
E. A.
,
Nuzzo
,
R. G.
,
Mahadevan
,
L.
, and
Lewis
,
J. A.
,
2016
, “
Biomimetic 4D Printing
,”
Nat. Mater.
,
15
(
4
), pp.
413
418
.
9.
Liu
,
Y.
,
Du
,
H.
,
Liu
,
L.
, and
Leng
,
J.
,
2014
, “
Shape Memory Polymers and Their Composites in Aerospace Applications: A Review
,”
Smart Mater. Struct.
,
23
(
2
), p.
023001
.
10.
Wu
,
Y.
,
Dong
,
X.
,
Kim
,
J.-K.
,
Wang
,
C.
, and
Sitti
,
M.
,
2022
, “
Wireless Soft Millirobots for Climbing Three-Dimensional Surfaces in Confined Spaces
,”
Sci. Adv.
,
8
(
21
), p.
eabn3431
.
11.
Kotikian
,
A.
,
McMahan
,
C.
,
Davidson
,
E. C.
,
Muhammad
,
J. M.
,
Weeks
,
R. D.
,
Daraio
,
C.
, and
Lewis
,
J. A.
,
2019
, “
Untethered Soft Robotic Matter With Passive Control of Shape Morphing and Propulsion
,”
Sci. Rob.
,
4
(
33
), p.
eaax7044
.
12.
Jin
,
Y.
,
Lin
,
Y.
,
Kiani
,
A.
,
Joshipura
,
I. D.
,
Ge
,
M.
, and
Dickey
,
M. D.
,
2019
, “
Materials Tactile Logic via Innervated Soft Thermochromic Elastomers
,”
Nat. Commun.
,
10
(
1
), pp.
1
8
.
13.
Dong
,
X.
,
Lum
,
G. Z.
,
Hu
,
W.
,
Zhang
,
R.
,
Ren
,
Z.
,
Onck
,
P. R.
, and
Sitti
,
M.
,
2020
, “
Bioinspired Cilia Arrays With Programmable Nonreciprocal Motion and Metachronal Coordination
,”
Sci. Adv.
,
6
(
45
), p.
eabc9323
.
14.
Montgomery
,
S. M.
,
Wu
,
S.
,
Kuang
,
X.
,
Armstrong
,
C. D.
,
Zemelka
,
C.
,
Ze
,
Q.
,
Zhang
,
R.
,
Zhao
,
R.
, and
Qi
,
H. J.
,
2021
, “
Magneto-mechanical Metamaterials With Widely Tunable Mechanical Properties and Acoustic Bandgaps
,”
Adv. Funct. Mater.
,
31
(
3
), p.
2005319
.
15.
Ze
,
Q.
,
Kuang
,
X.
,
Wu
,
S.
,
Wong
,
J.
,
Montgomery
,
S. M.
,
Zhang
,
R.
,
Kovitz
,
J. M.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2020
, “
Magnetic Shape Memory Polymers With Integrated Multifunctional Shape Manipulation
,”
Adv. Mater.
,
32
(
4
), p.
1906657
.
16.
Wu
,
S.
,
Ze
,
Q.
,
Zhang
,
R.
,
Hu
,
N.
,
Cheng
,
Y.
,
Yang
,
F.
, and
Zhao
,
R.
,
2019
, “
Symmetry-Breaking Actuation Mechanism for Soft Robotics and Active Metamaterials
,”
ACS Appl. Mater. Interfaces
,
11
(
44
), pp.
41649
41658
.
17.
Zou
,
B.
,
Liang
,
Z.
,
Cui
,
Z.
,
Xiao
,
K.
,
Shao
,
S.
, and
Ju
,
J.
,
2022
, “
Magneto-Thermomechanically Triggered Active Mechanical Metamaterials–Untethered, Reversible, Reprogrammable Transformations With Shape Locking
,”
arXiv:2207.03177
. abs/2207.03177
18.
Chen
,
L.
,
Tan
,
K.
,
Yang
,
S.
, and
Deng
,
Q.
,
2022
, “
Evoking the Snap-Through Instability in Hard-Magnetic Soft Materials: Rapid Actuation and Giant Deformation
,”
Int. J. Solids Struct.
,
246–247
(
15
), p.
111607
.
19.
Tan
,
K.
,
Chen
,
L.
,
Yang
,
S.
, and
Deng
,
Q.
,
2022
, “
Dynamic Snap-Through Instability and Damped Oscillation of a Flat Arch of Hard Magneto-Active Elastomers
,”
Int. J. Mech. Sci.
,
230
(
15
), p.
111607
.
20.
Yuan
,
Z.
,
Cui
,
Z.
, and
Ju
,
J.
,
2021
, “
Micropolar Homogenization of Wavy Tetra-Chiral and Tetra-Achiral Lattices to Identify Axial–Shear Coupling and Directional Negative Poisson's Ratio
,”
Mater. Des.
,
201
, pp.
109483
.
21.
Chen
,
T.
,
Pauly
,
M.
, and
Reis
,
P. M.
,
2021
, “
A Reprogrammable Mechanical Metamaterial With Stable Memory
,”
Nature
,
589
(
7842
), pp.
386
390
.
22.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
.
23.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
24.
Che
,
K.
,
Yuan
,
C.
,
Wu
,
J.
,
Jerry Qi
,
H.
, and
Meaud
,
J.
,
2017
, “
Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011004
.
25.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Multistable Shape-Reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
7915
7920
.
26.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
27.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
, “
A Centrally-Clamped Parallel-Beam Bistable MEMS Mechanism
,”
Proceedings of the 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 01CH37090), Interlaken, Switzerland, January, IEEE
, pp.
353
356
.
28.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
,
2009
, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101001
.
29.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators, A
,
69
(
3
), pp.
212
216
.
30.
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Modeling and Experimental Validation of Actuating a Bistable Buckled Beam Via Moment Input
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051005
.
31.
Addo-Akoto
,
R.
, and
Han
,
J.-H.
,
2019
, “
Bidirectional Actuation of Buckled Bistable Beam Using Twisted String Actuator
,”
J. Intell. Mater. Syst. Struct.
,
30
(
4
), pp.
506
516
.
32.
Cui
,
Z.
, and
Ju
,
J.
,
2022
, “
Mechanical Coupling Effects of 2D Lattices Uncovered by Decoupled Micropolar Elasticity Tensor and Symmetry Operation
,”
J. Mech. Phys. Solids
,
167
, p.
105012
.
33.
Cui
,
Z.
,
Liang
,
Z.
, and
Ju
,
J.
,
2022
, “
A Non-Centrosymmetric Square Lattice With an Axial–Bending Coupling
,”
Mater. Des.
,
216
, p.
110532
34.
Timoshenko
,
S.
, and
Gere
,
J.
,
1970
,
Theory of Elastic Stability
,
Tata McGraw-Hill Education
,
Mineola, NY
.
35.
Librandi
,
G.
,
Tubaldi
,
E.
, and
Bertoldi
,
K.
,
2021
, “
Programming Nonreciprocity and Reversibility in Multistable Mechanical Metamaterials
,”
Nat. Commun.
,
12
(
1
), pp.
1
9
.
You do not currently have access to this content.