Abstract

Characterizing the adhesion between thin films and rigid substrates is crucial in engineering applications. Still, existing standard methods suffer from issues such as poor reproducibility, difficulties in quantifying adhesion parameters, or overestimation of adhesion strength and fracture energy. Recent studies have shown that the blister test (BT) is a superior method for characterizing adhesion, as it provides a quantifiable measurement of mix-mode fracture energy, and it is highly reproducible. In this paper, we present a novel method to characterize mechanical mix-mode adhesion between thin films and rigid substrates using the BT. Our method combines the full triaxial displacement field obtained through digital image correlation with inverse finite element method simulations using cohesive zone elements. This approach eliminates the need for making any mechanistic or kinematic assumptions of the blister formation and allows the characterization of the full traction-separation law governing the adhesion between the film and the substrate. To demonstrate the efficacy of this methodology, we conducted a case study analyzing the adhesion mechanics of a polymeric pressure-sensitive adhesive on an aluminum substrate. Our results indicate that the proposed technique is a reliable and effective method for characterizing the mix-mode traction-separation law governing the mechanical behavior of the adhesive interface and could have broad applications in the field of materials science and engineering. Also, by providing a comprehensive understanding of the adhesion mechanics between thin films and rigid substrates, our method can aid in the design and optimization of adhesively bonded structures.

References

1.
Cramer
,
S. D.
, and
Covino
,
B. S.
,
2003
, “
ASM Corrosion Handbook
,”
Anti-Corros. Methods Mater
,
50
(
4
), p.
297
.
2.
Baek
,
D.
,
Sim
,
K.-B.
, and
Kim
,
H.-J.
,
2021
, “
Mechanical Characterization of Core-Shell Rubber/Epoxy Polymers for Automotive Structural Adhesives as a Function of Operating Temperature
,”
Polymers
,
13
(
5
), p.
734
.
3.
Troconis
,
B. C. R.
, and
Frankel
,
G. S.
,
2014
, “
Effects of Pretreatments on the Adhesion of Acetoacetate to AA2024-T3 Using the Blister Test
,”
Corrosion
,
70
(
5
), pp.
483
495
.
4.
ASTM D3359
,
2017
,
Standard Test Methods for Rating Adhesion by Tape Test
,
ASTM International
,
West Conshohocken, PA
.
5.
Rezaee
,
M.
,
Tsai
,
L.
,
Istiaque Haider
,
M.
,
Yazdi
,
A.
,
Sanatizadeh
,
E.
, and
Salowitz
,
N.
,
2019
, “
Quantitative Peel Test for Thin Films/Layers Based on a Coupled Parametric and Statistical Study
,”
Scientific Reports
,
9
(
1
), p.
19805
.
6.
ASTM D1002-10
,
2019
,
Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal)
,
ASTM International
,
West Conshohocken, PA
.
7.
Karny
,
M.
,
2019
, “
On the Aerospace-Grade Adhesives Shear Strength Testing With ASTM D5656 Test as an Example
,”
Trans. Aerosp. Res.
,
2019
(
2
), pp.
27
37
.
8.
ASTM D4541-22
,
2022
,
Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers
,
ASTM International
,
West Conshohocken, PA
, p.
16
.
9.
Funke
,
W.
,
1996
, “
Problems and Progress in Organic Coatings Science and Technology
,”
Prog. Org. Coat.
,
31
(
1–2
), pp.
5
9
.
10.
ASTM D1876-08
,
2023
,
Standard Test Method for Peel Resistance of Adhesives (T-Peel Test)
,
ASTM International
,
West Conshohocken, PA. United States
.
11.
Gent
,
A. N.
, and
Lewandowski
,
L. H.
,
1986
, “
Blow-Off Pressures for Adhering Layers
,”
J. Appl. Poly. Sci
,
33
(
5
), pp.
1567
1577
.
12.
Bartlett
,
M. D.
,
Case
,
S. W.
,
Kinloch
,
A. J.
, and
Dillard
,
D. A.
,
2023
, “
Peel Tests for Quantifying Adhesion and Toughness: A Review
,”
Prog. Mater. Sci.
,
137
, p.
101086
.
13.
Yang
,
Z.
,
Sun
,
J.
,
Li
,
K.
,
Lian
,
Y.
,
He
,
X.
, and
Zheng
,
Z.
,
2018
, “
Theoretical Study on Synchronous Characterization of Surface and Interfacial Mechanical Properties of Thin-Film/Substrate Systems With Residual Stress Based on Pressure Blister Test Technique
,”
Polymers
,
10
(
1
), p.
49
.
14.
Rincon Troconis
,
B. C.
,
2013
,
Blister Test for Measurements of Adhesion and Adhesion Degradation of Organic Polymers on AA2024-T3
,
The Ohio State University
,
Columbus, OH
, p.
248
.
15.
Rincon Troconis
,
B. C.
, and
Frankel
,
G. S.
,
2013
, “
Effect of Roughness and Surface Topography on Adhesion of PVB to AA2024-T3 Using the Blister Test
,”
Surf. Coat. Technol.
,
236
, pp.
531
539
.
16.
Cao
,
Z.
,
Wang
,
P.
,
Gao
,
W.
,
Tao
,
L.
,
Suk
,
J. W.
,
Ruoff
,
R. S.
,
Akinwande
,
D.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2014
, “
A Blister Test for Interfacial Adhesion of Large-Scale Transferred Graphene
,”
Carbon
,
69
, pp.
390
400
.
17.
Sofla
,
A.
,
Seker
,
E.
,
Landers
,
J. P.
, and
Begley
,
M. R.
,
2010
, “
PDMS-Glass Interface Adhesion Energy Determined Via Comprehensive Solutions for Thin Film Bulge/Blister Tests
,”
ASME J. Appl. Mech.
,
77
(
3
), p.
031007
.
18.
Khun
,
N. W.
,
Rincon Troconis
,
B. C.
, and
Frankel
,
G. S.
,
2014
, “
Effects of Carbon Nanotube Content on Adhesion Strength and Wear and Corrosion Resistance of Epoxy Composite Coatings on AA2024-T3
,”
Prog. Org. Coat.
,
77
(
1
), pp.
72
80
.
19.
Kappes
,
M.
,
Frankel
,
G. S.
, and
Sridhar
,
N.
,
2010
, “
Adhesion and Adhesion Degradation of a Pressure Sensitive Tape on Carbon Steel
,”
Prog. Org. Coat.
,
69
(
1
), pp.
57
62
.
20.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.
21.
Jensen
,
H. M.
,
1991
, “
The Blister Test for Interface Toughness Measurement
,”
Eng. Fract. Mech.
,
40
(
3
), pp.
475
486
.
22.
Hinkley
,
J. A.
,
1983
, “
A Blister Test for Adhesion of Polymer Films to SiO2
,”
J. Adhesion
,
16
(
2
), pp.
115
125
.
23.
de Barros
,
S.
,
Fadhil
,
B. M.
,
Alila
,
F.
,
Diop
,
J.
,
Reis
,
J. M. L.
,
Casari
,
P.
, and
Jacquemin
,
F.
,
2019
, “
Using Blister Test to Predict the Failure Pressure in Bonded Composite Repaired Pipes
,”
Compos. Struct.
,
211
, pp.
125
133
.
24.
Williams
,
M. L.
,
de Vries
,
K. L.
, and
Despain
,
R. R.
,
1973
, “
A Technique for Evaluating Dental Adhesives
,”
J. Dent. Res.
,
52
(
3
), pp.
517
521
.
25.
Briscoe
,
A. B. J.
, and
Panesar
,
S. S.
,
1991
, “
The Application of the Blister Test to an Elastomeric Adhesive
,”
Proc. R. Soc. Lond. A
,
433
(
1887
), pp.
23
43
.
26.
Nsengiyumva
,
G.
, and
Kim
,
Y.-R.
,
2022
, “
Field Displacement-Based Inverse Method for Elastic and Viscoelastic Constitutive Properties
,”
Exp. Mech.
,
62
(
9
), pp.
1553
1568
.
27.
Ramirez-Tamayo
,
D.
,
Soulami
,
A.
,
Gupta
,
V.
,
Restrepo
,
D.
,
Montoya
,
A.
, and
Millwater
,
H.
,
2021
, “
A Complex-Variable Cohesive Finite Element Subroutine to Enable Efficient Determination of Interfacial Cohesive Material Parameters
,”
Eng. Fract. Mech.
,
247
, p.
107638
.
28.
Hill
,
B. C.
,
Giraldo-Londoño
,
O.
,
Paulino
,
G. H.
, and
Buttlar
,
W. G.
,
2017
, “
Inverse Estimation of Cohesive Fracture Properties of Asphalt Mixtures Using an Optimization Approach
,”
Exp. Mech.
,
57
(
4
), pp.
637
648
.
29.
Jungstedt
,
E.
,
Östlund
,
S.
, and
Berglund
,
L. A.
,
2022
, “
Transverse Fracture Toughness of Transparent Wood Biocomposites by FEM Updating With Cohesive Zone Fracture Modeling
,”
Compos. Sci. Technol.
,
225
, p.
109492
.
30.
Jiang
,
W.-G.
,
Wu
,
Y.
,
Qin
,
Q.-H.
,
Li
,
D.-S.
,
Liu
,
X.-B.
, and
Fu
,
M.-F.
,
2018
, “
A Molecular Dynamics Based Cohesive Zone Model for Predicting Interfacial Properties Between Graphene Coating and Aluminum
,”
Comput. Mater. Sci.
,
151
, pp.
117
123
.
31.
Liu
,
C.
,
Lovato
,
M. L.
,
Clarke
,
K. D.
,
Alexander
,
D. J.
, and
Blumenthal
,
W. R.
,
2018
, “
Miniature Bulge Test and Energy Release Rate in HIPed Aluminum/Aluminum Interfacial Fracture
,”
J. Mech. Phys. Solids
,
120
, pp.
179
198
.
32.
Park
,
K.
, and
Paulino
,
G. H.
,
2012
, “
Computational Implementation of the PPR Potential-Based Cohesive Model in ABAQUS: Educational Perspective
,”
Eng. Fract. Mech.
,
93
, pp.
239
262
.
33.
3MTM Wrap Film Series 1080
,
n.d.
, https://www.3m.com/3M/en_US/p/d/b00021027/, Accessed March 14, 2023.
34.
Interpolate 2-D or 3-D Scattered Data—MATLAB Griddata
,
n.d.
, https://www.mathworks.com/help/matlab/ref/griddata.html
35.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.
36.
General Procedures for Interior and Exterior Dry Application
,
n.d.
, https://multimedia.3m.com/mws/media/1002230O/instruction-bulletin-5-5-general-procedures-for-interior-and-exterior-dry-application.pdf, Accessed April 28, 2023.
37.
Development of a Pressurized Blister Test for Interface Characterization of Aggregate Highly Polymerized Bituminous Materials
,
n.d.
, https://ascelibrary.org/doi/epdf/10.1061/%28ASCE%29MT.1943-5533.0000222, Accessed April 13, 2023.
38.
Pratt
,
V.
,
1987
, “
Direct Least-Squares Fitting of Algebraic Surfaces
,”
ACM SIGGRAPH Computer Graphics
,
21
(
4
), pp.
145
152
. doi.org/10.1145/37401.37420
39.
Suresh
,
S.
,
1998
,
Fatigue of Materials
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
40.
Liu
,
Z.
,
Gibson
,
R. F.
, and
Newaz
,
G. M.
,
2002
, “
The Use of a Modified Mixed Mode Bending Test for Characterization of Mixed-mode Fracture Behavior of Adhesively Bonded Metal Joints
,”
J. Adhes.
,
78
(
3
), pp.
223
224
. doi.org/10.1145/37401.37420
41.
Leffler
,
K.
,
Alfredsson
,
K. S.
, and
Stigh
,
U.
,
2007
, “
Shear Behaviour of Adhesive Layers
,”
Int. J. Solids Struct.
,
44
(
2
), pp.
530
545
.
42.
Pirondi
,
A.
, and
Nicoletto
,
G.
,
2002
, “
Mixed Mode I/II Fracture Toughness of Bonded Joints
,”
Int. J. Adhes. Adhes.
,
22
(
2
), pp.
109
117
.
43.
Choupani
,
N.
,
2008
, “
Mixed-Mode Cohesive Fracture of Adhesive Joints: Experimental and Numerical Studies
,”
Eng. Fract. Mech.
,
75
(
15
), pp.
4363
4382
.
44.
ASTM D882-18
,
2018
,
Standard Test Method for Tensile Properties of Thin Plastic Sheeting
,
ASTM International
,
West Conshohocken, PA
.
You do not currently have access to this content.