Abstract

Foam sandwich tube is composed of two tubes and a lightweight foam core possessing various advantages, i.e., low density, excellent mitigation performance and energy absorption, etc. With the hope of enhancing the load bearing and energy absorption capacity of energy absorbers, a novel efficient energy absorber composed of axial necking-expansion deformation mode for sandwich circular tube with metal foam core (SCMF-Tube) by an inner-outer conical-cylindrical die is proposed. Considering deformation modes including necking, stretching, bending, and strain hardening of metal tubes as well as densification of the metal foam core, we established an analytical model of necking-expansion deformation for the SCMF-Tube. Then, finite element (FE) simulations are conducted. Analytical deformation modes, load-displacement curves, and bending radii all agree well with the FE results. Effects of material property and geometry on the necking-expansion deformation of SCMF-Tubes are discussed in detail based on the validated analytical model. Adjusting parameters, such as the wall thickness ratio of the inner tube to the outer tube and the maximum diameter of the die can improve the load bearing and energy absorption capacity of the novel energy absorber. Finally, the specific energy absorption of the SCMF-Tube under necking-expansion deformation is 68% higher than that of the circular metal tube under expansion deformation.

References

1.
Liu
,
Y. Z.
, and
Qiu
,
X. M.
,
2016
, “
A Theoretical Study of the Expansion Metal Tubes
,”
Int. J. Mech. Sci.
,
114
, pp.
157
165
.
2.
Niknejad
,
A.
, and
Moeinifard
,
M.
,
2012
, “
Theoretical and Experimental Studies of the External Inversion Process in the Circular Metal Tubes
,”
Mater. Des.
,
40
, pp.
324
330
.
3.
Liu
,
Y. Z.
,
Qiu
,
X. M.
,
Wang
,
W.
, and
Yu
,
T. X.
,
2017
, “
An Improved Two-Arcs Deformational Theoretical Model of the Expansion Tubes
,”
Int. J. Mech. Sci.
,
133
, pp.
240
250
.
4.
Yan
,
J. L.
,
Yao
,
S. G.
,
Xu
,
P.
,
Peng
,
Y.
,
Shao
,
H.
, and
Zhao
,
S. Z.
,
2016
, “
Theoretical Prediction and Numerical Studies of Expanding Circular Tubes as Energy Absorbers
,”
Int. J. Mech. Sci.
,
105
, pp.
206
214
.
5.
Luo
,
M.
,
Yang
,
J. L.
,
Liu
,
H.
,
Lu
,
G. X.
, and
Yu
,
J. L.
,
2019
, “
Energy Absorption of Expansion Tubes Using a Conical-Cylindrical Die: Theoretical Model
,”
Int. J. Mech. Sci.
,
157–158
, pp.
207
220
.
6.
Wu
,
M. Z.
,
Zhang
,
X. W.
, and
Zhang
,
Q. M.
,
2021
, “
A New Model for the Expansion Tube Considering the Stress Coupling: Theory, Experiments and Simulations
,”
Def. Technol.
,
18
(
7
), pp.
1190
1204
.
7.
Liu
,
J. Y.
,
Liu
,
W. Q.
,
Pantula
,
A.
,
Wang
,
Z. L.
,
Gracias
,
D. H.
, and
Nguyen
,
T. D.
,
2019
, “
Periodic Buckling of Soft 3D Printed Bioinspired Tubes
,”
Extreme Mech. Lett.
,
30
, p.
100514
.
8.
Emuna
,
N.
, and
Cohen
,
N.
,
2021
, “
Inversion and Perversion in Twist Incompatible Isotropic Tubes
,”
Extreme Mech. Lett.
,
46
, p.
101303
.
9.
Yang
,
J. L.
,
Luo
,
M.
,
Hua
,
Y. L.
, and
Lu
,
G. X.
,
2010
, “
Energy Absorption of Expansion Tubes Using a Conical–Cylindrical Die: Experiments and Numerical Simulation
,”
Int. J. Mech. Sci.
,
52
(
5
), pp.
716
725
.
10.
Yao
,
S. G.
,
Li
,
Z. X.
,
Yan
,
J. L.
,
Xu
,
P.
, and
Peng
,
Y.
,
2018
, “
Analysis and Parameters Optimization of an Expanding Energy-Absorbing Structure for a Rail Vehicle Couple
,”
Thin Wall. Struct.
,
125
, pp.
129
139
.
11.
Dewhurst
,
P.
,
Hawkyard
,
J. B.
, and
Johnson
,
W.
,
1974
, “
A Theoretical and Experimental Investigation of Dynamic Circular Cylindrical Expansions in Metals
,”
J. Mech. Phys. Solids
,
22
(
4
), pp.
267
274
.
12.
Cohen
,
T.
,
Masri
,
R.
, and
Durban
,
D.
,
2009
, “
Analysis of Circular Hole Expansion With Generalized Yield Criteria
,”
Int. J. Solids Struct.
,
46
(
20
), pp.
3643
3650
.
13.
Clark
,
R. A.
,
1970
, “
An Expansion Bellows Problem
,”
ASME J. Appl. Mech.
,
37
(
1
), pp.
61
69
.
14.
Cohen
,
T.
, and
Durban
,
D.
,
2013
, “
Hypervelocity Cavity Expansion in Porous Elastoplastic Solids
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011017
.
15.
Chahardoli
,
S.
, and
Nia
,
A. A.
,
2017
, “
Investigation of Mechanical Behavior of Energy Absorbers in Expansion and Folding Modes Under Axial Quasi-Static Loading in Both Experimental and Numerical Methods
,”
Thin Wall. Struct.
,
120
, pp.
319
332
.
16.
Li
,
J.
,
Gao
,
G. J.
,
Dong
,
H. P.
,
Xie
,
S. C.
, and
Guan
,
W. Y.
,
2016
, “
Study on the Energy Absorption of the Expanding–Splitting Circular Tube by Experimental Investigations and Numerical Simulations
,”
Thin Wall. Struct.
,
103
, pp.
105
114
.
17.
Moreno
,
C.
,
Williams
,
T.
,
Beaumont
,
R.
,
Hughes
,
D. J.
, and
Dashwood
,
R.
,
2016
, “
Testing, Simulation and Evaluation of a Novel Hybrid Energy Absorber
,”
Int. J. Impact Eng.
,
93
, pp.
11
27
.
18.
Moreno
,
C.
,
Beaumont
,
R.
,
Hughes
,
D. J.
,
Williams
,
T.
, and
Dashwood
,
R.
,
2017
, “
Quasi-Static and Dynamic Testing of Splitting, Expansion and Expansion-Splitting Hybrid Tubes Under Oblique Loading
,”
Int. J. Impact Eng.
,
100
, pp.
117
130
.
19.
Azimi
,
M. B.
, and
Asgari
,
M.
,
2016
, “
A New Bi-Tubular Conical–Circular Structure for Improving Crushing Behavior Under Axial and Oblique Impacts
,”
Int. J. Mech. Sci.
,
105
, pp.
253
265
.
20.
Huang
,
X.
,
Lu
,
G.
, and
Yu
,
T. X.
,
2002
, “
On the Axial Splitting and Curling of Circular Metal Tubes
,”
Int. J. Mech. Sci.
,
44
(
11
), pp.
2369
2391
.
21.
Huang
,
X.
,
Lu
,
G.
, and
Yu
,
T. X.
,
2002
, “
Energy Absorption in Splitting Square Metal Tubes
,”
Thin Wall. Struct.
,
40
(
2
), pp.
153
165
.
22.
Lu
,
G.
,
Ong
,
L. S.
,
Wang
,
B.
, and
Ng
,
H. W.
,
1994
, “
An Experimental Study on Tearing Energy in Splitting Square Metal Tubes
,”
Int. J. Mech. Sci.
,
36
(
12
), pp.
1087
1097
.
23.
Niknejad
,
A.
,
Rezaei
,
B.
, and
Liaghat
,
G. H.
,
2013
, “
Empty Circular Metal Tubes in the Splitting Process—Theoretical and Experimental Studies
,”
Thin Wall. Struct.
,
72
, pp.
48
60
.
24.
Li
,
Z. B.
,
Chen
,
R.
, and
Lu
,
F. Y.
,
2018
, “
Comparative Analysis of Crashworthiness of Empty and Foam-Filled Thin-Walled Tubes
,”
Thin Wall. Struct.
,
124
, pp.
343
349
.
25.
Zhang
,
Z. J.
,
Wang
,
Y. J.
,
Huang
,
L.
,
Fu
,
Y.
,
Zhang
,
Z. Q.
,
Wei
,
X.
,
Sui
,
Y. G.
,
Zhang
,
Q. C.
, and
Jin
,
F.
,
2022
, “
Mechanical Behaviors and Failure Modes of Sandwich Cylinders With Square Honeycomb Cores Under Axial Compression
,”
Thin Wall. Struct.
,
172
, p.
108868
.
26.
Zhang
,
J. X.
,
Ye
,
Y.
,
Zhu
,
Y. Q.
,
Yuan
,
H.
,
Qin
,
Q. H.
, and
Wang
,
T. J.
,
2020
, “
On Axial Splitting and Curling Behaviour of Circular Sandwich Metal Tubes With Metal Foam Core
,”
Int. J. Solids Struct.
,
202
, pp.
111
125
.
27.
Zhang
,
J. X.
,
Guo
,
H. Y.
,
Du
,
J. L.
,
Yuan
,
H.
,
Zhu
,
Y. Q.
, and
Qin
,
Q. H.
,
2021
, “
Splitting and Curling Collapse of Metal Foam Core Square Sandwich Metal Tubes: Experimental and Theoretical Investigations
,”
Thin Wall. Struct.
,
169
, p.
108346
.
28.
Djamaluddin
,
F.
,
Abdullah
,
S.
,
Ariffin
,
A. K.
, and
Nopiah
,
Z. M.
,
2015
, “
Optimization of Foam-Filled Double Circular Tubes Under Axial and Oblique Impact Loading Conditions
,”
Thin Wall. Struct.
,
87
, pp.
1
11
.
29.
Wang
,
Y. J.
,
Zhang
,
Z. J.
,
Xue
,
X. W.
,
Zhou
,
J.
, and
Song
,
Z. X.
,
2021
, “
Axial and Lateral Crushing Performance of Plate-Lattice Filled Square Sandwich Tubes
,”
Compos. Struct.
,
274
, p.
114404
.
30.
Haghgoo
,
M.
,
Babaei
,
H.
, and
Mostofi
,
T. M.
,
2022
, “
3D Numerical Investigation of the Detonation Wave Propagation Influence on the Triangular Plate Deformation Using Finite Rate Chemistry Model of LS-DYNA CESE Method
,”
Int. J. Impact Eng.
,
161
, p.
104108
.
31.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.
32.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structures and Properties
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.