Abstract

The problem of a completely debonded short fiber (rigid line inclusion/anticrack) embedded in a 2D isotropic elastic soft matrix subjected to the remote loading condition is of fundamental interest. The current work investigates completely debonded anticrack embedded in a soft (isotropic) matrix using Kolosov Muskhelisvili's complex potential framework. Here two configurations are studied: debonded inclusion oriented (i) parallel and (ii) perpendicular to the loading direction. In particular, the potentials take the form of a non-homogeneous Riemann—Hilbert equation for the given problem. Upon solving analytical forms of potentials, the stress fields were obtained. The stress field for the fully debonded anticrack exhibited oscillatory singular behavior between r−3/4 and r−1/4 with the dependence on the oscillatory index ε and material constants. The correctness of the analytical solution was validated using numerical simulation and experiments based on the digital photoelasticity technique. The analytical results were in good agreement with the experimental and numerically obtained stress fields confirming the accuracy of it. The magnitude of singularity is quantified by defining a complex stress intensity factor at the tip of the discontinuity and compared with the experimentally estimated value. So far in the literature, no full-field analytical solution exists for the completely debonded rigid inclusion embedded in an isotropic soft matrix. The solution obtained in the present work is of fundamental importance in developing the constitutive properties of short fiber reinforced thermoplastic (SFRT) composites.

References

1.
Sato
,
N.
,
Kurauchi
,
T.
,
Sato
,
S.
, and
Kamigaito
,
O.
,
1991
, “
Microfailure Behaviour of Randomly Dispersed Short Fibre Reinforced Thermoplastic Composites Obtained by Direct SEM Observation
,”
J. Mater. Sci.
,
26
(14), pp.
3891
3898
.
2.
Hull
,
D.
, and
Clyne
,
T.
,
1996
,
An Introduction to Composite Materials
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
3.
Andrianov
,
I. V.
,
Bolshakov
,
V. I.
,
Danishevs’kyy
,
V. V.
, and
Weichert
,
D.
,
2007
, “
Asymptotic Simulation of Imperfect Bonding in Periodic Fiber-Reinforced Composite Materials Under Axial Shear
,”
Int. J. Mech. Sci.
,
49
(12), pp.
1344
1354
.
4.
Fan
,
M.
,
Yi
,
D. K.
, and
Xiao
,
Z. M.
,
2014
, “
Elastic-Plastic Stress Investigation for an Arc-Shaped Interface Crack in Composite Material
,”
Int. J. Mech. Sci.
,
83
, pp.
104
111
.
5.
Arif
,
M. F.
,
Meraghni
,
F.
,
Chemisky
,
Y.
,
Despringre
,
N.
, and
Robert
,
G.
,
2014
, “
In Situ Damage Mechanisms Investigation of PA66/GF30 Composite: Effect of Relative Humidity
,”
Compos. Part B
,
58
, pp.
487
495
.
6.
Notta-Cuvier
,
D.
,
Lauro
,
F.
, and
Bennani
,
B.
,
2015
, “
Modelling of Progressive Fibre/Matrix Debonding in Short-Fibre Reinforced Composites Up To Failure
,”
Int. J. Solids Struct.
,
66
, pp.
140
150
.
7.
Hanhan
,
I.
, and
Sangid
,
M. D.
,
2021
, “
Damage Propagation in Short Fiber Thermoplastic Composites Analyzed Through Coupled 3D Experiments and Simulations
,”
Compos. Part B
,
218
, p.
108931
.
8.
Agarwal
,
B. D.
,
Broutman
,
L. J.
, and
Chandrashekhar
,
K.
,
2006
,
Analysis and Performance of Fiber Composites
, 3rd ed.,
Wiley
,
New York
.
9.
Liu
,
Y. J.
,
Nishimura
,
N.
,
Otani
,
Y.
,
Takahashi
,
T.
,
Chen
,
X. L.
, and
Munakata
,
H.
,
2005
, “
A Fast Boundary Element Method for the Analysis of Fiber-Reinforced Composites Based on a Rigid-Inclusion Model
,”
ASME J. Appl. Mech.
,
72
(1), pp.
115
128
.
10.
De
,
S. K.
, and
White
,
J. R.
,
1996
,
Short Fibre-Polymer Composites
, 1st ed.,
Woodhead Publication
,
Cambridge
.
11.
Fu
,
S. Y.
,
Hu
,
X.
, and
Yue
,
C. Y.
,
1999
, “
Effects of Fibre Length and Orientation Distributions on the Mechanical Properties of Short-Fibre-Reinforced Polymers—A Review
,”
Mater. Sci. Res. Int.
,
5
(
6Appendix
), pp.
74
83
.
12.
Fu
,
S. Y.
,
Lauke
,
B.
, and
Mai
,
Y. W.
,
2009
,
Science and Engineering of Short Fibre Reinforced Polymers Composites
, 1st ed.,
Woodhead Publication
,
Cambridge
.
13.
Nguyen
,
B. N.
, and
Khaleel
,
M. A.
,
2004
, “
A Mechanistic Approach to Damage in Short-Fiber Composites Based on Micromechanical and Continuum Damage Mechanics Descriptions
,”
Compos. Sci. Technol.
,
64
(
5
), pp.
607
617
.
14.
Tamboura
,
S.
,
Abdessalem
,
A.
,
Fitoussi
,
J.
,
Daly
,
H. B.
, and
Tcharkhtchi
,
A.
,
2022
, “
On the Mechanical Properties and Damage Mechanisms of Short Fibers Reinforced Composite Submitted to Hydrothermal Aging: Application to Sheet Molding Compound Composite
,”
Eng. Fail. Anal.
,
131
, p.
105806
.
15.
Zhang
,
L.
,
Li
,
Z.
,
Zhang
,
H.
,
Liu
,
Z.
, and
Zhu
,
P.
,
2022
, “
Fatigue Failure Mechanism Analysis and Life Prediction of Short Fiber Reinforced Polymer Composites Under Tension-Tension Loading
,”
Int. J. Fatigue
,
160
, p.
106880
.
16.
Wang
,
S. S.
, and
Chim
,
E. S. M.
,
1983
, “
Fatigue Damage and Degradation in Random Short-Fiber SMC Composite
,”
J. Compos. Mater.
,
17
(
2
), pp.
114
134
.
17.
Noda
,
K.
,
Takahara
,
A.
, and
Kajiyama
,
T.
,
2001
, “
Fatigue Failure Mechanisms of Short Glass-Fiber Reinforced Nylon 66 Based on Nonlinear Dynamic Viscoelastic Measurement
,”
Polymer
,
42
(
13
), pp.
5803
5811
.
18.
Huang
,
H.
, and
Talreja
,
R.
,
2006
, “
Numerical Simulation of Matrix Micro-cracking in Short Fiber Reinforced Polymer Composites: Initiation and Propagation
,”
Compos. Sci. Technol.
,
66
(
15
), pp.
2743
2757
.
19.
Klimkeit
,
B.
,
Castagnet
,
S.
,
Nadot
,
Y.
,
Habib
,
A.
,
Benoit
,
G.
,
Bergamo
,
S.
,
Dumas
,
C.
, and
Achard
,
S.
,
2011
, “
Fatigue Damage Mechanisms in Short Fiber Reinforced PBT+PET GF30
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1577
1588
.
20.
Jendli
,
Z.
,
Fitoussi
,
J.
,
Meraghni
,
F.
, and
Baptiste
,
D.
,
2005
, “
Anisotropic Strain Rate Effects on the Fibre–Matrix Interface Decohesion in Sheet Moulding Compound Composites
,”
Compos. Sci. Technol.
,
65
(
3–4
), pp.
387
393
.
21.
Shirinbayan
,
M.
,
Fitoussi
,
J.
,
Bocquet
,
M.
,
Meraghni
,
F.
,
Surowiec
,
B.
, and
Tcharkhtchi
,
A.
,
2017
, “
Multi-scale Experimental Investigation of the Viscous Nature of Damage in Advanced Sheet Molding Compound (A-SMC) Submitted to High Strain Rates
,”
Compo. Part B
,
115
, pp.
3
13
.
22.
Rolland
,
H.
,
Saintiera
,
N.
,
Raphael
,
I.
,
Lenoir
,
N.
,
King
,
A.
, and
Robert
,
G.
,
2018
, “
Fatigue Damage Mechanisms of Short Fiber Reinforced PA66 as Observed by In-Situ Synchrotron X-Ray Microtomography
,”
Compos. Part B
,
143
, pp.
217
229
.
23.
Dundurs
,
J.
, and
Markenscoff
,
X.
,
1989
, “
A Green’s Function Formulation of Anticracks and Their Interaction With Load-Induced Singularities
,”
ASME J. Appl. Mech.
,
56
(
3
), pp.
550
555
.
24.
Hu
,
K. X.
, and
Chandra
,
A.
,
1993
, “
Interactions Among General Systems of Cracks and Anticracks: An Integral Equation Approach
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
920
928
.
25.
Rolland
,
H.
,
Saintier
,
N.
, and
Robert
,
G.
,
2016
, “
Damage Mechanisms in Short Glass Fibre Reinforced Thermoplastic During In Situ Microtomography Tensile Tests
,”
Compos. Part B
,
90
, pp.
365
377
.
26.
Jobin
,
T. M.
,
Khaderi
,
S. N.
, and
Ramji
,
M.
,
2022
, “
A Photoelastic Investigation of Partially Debonded Rigid Line Inclusion
,”
Int. J. Mech. Sci.
,
217
, p.
107003
.
27.
Kattis
,
M.
,
1991
, “
Thermal Stress Intensity Factors for a Partially Bonded Rigid Fiber Inclusion
,”
Eng. Fract. Mech.
,
40
(
1
), pp.
159
165
.
28.
Wang
,
Z.
,
Zhang
,
H. T.
, and
Chou
,
Y. T.
,
1985
, “
Characteristics of the Elastic Field of a Rigid Line Inhomogeneity
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
818
822
.
29.
Nuismer
,
R. J.
, and
Sendeckyj
,
G. P.
,
1977
, “
On the Changing Order of Singularity at a Crack Tip
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
625
630
.
30.
Ballarini
,
R.
,
1990
, “
A Rigid Line Inclusion at a Bimaterial Interface
,”
Eng. Fract. Mech.
,
37
(
1
), pp.
l
5
.
31.
Symington
,
M. F.
,
1987
, “
Eigenvalues for Interface Cracks in Linear Elasticity
,”
ASME J. Appl. Mech.
,
54
(
4
), pp.
973
974
.
32.
Hills
,
D. A.
, and
Barber
,
J. R.
,
1993
, “
Interface Cracks
,”
Int. J. Mech. Sci.
,
3
(
1
), pp.
27
37
.
33.
Chang
,
J.
, and
Xu
,
J. Q.
,
2007
, “
The Singular Stress Field and Stress Intensity Factors of a Crack Terminating at a Bimaterial Interface
,”
Int. J. Mech. Sci.
,
49
(
7
), pp.
888
897
.
34.
Cheng
,
Z.
,
Gao
,
D.
, and
Zhong
,
Z.
,
2012
, “
Interface Crack of Two Dissimilar Bonded Functionally Graded Strips With Arbitrary Distributed Properties Under Plane Deformations
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
287
293
.
35.
Wang
,
L.
,
Bai
,
R. X.
, and
Chen
,
H.
,
2013
, “
Analytical Modeling of the Interface Crack Between a Piezoelectric Actuator and an Elastic Substrate Considering Shear Effects
,”
Int. J. Mech. Sci.
,
66
, pp.
141
148
.
36.
Shi
,
P.
, and
Zheng
,
X.
,
2015
, “
The Yoffe-Type Moving Tubular Interface Crack in a Hollow Composite Cylinder With Finite Length
,”
Int. J. Mech. Sci.
,
98
, pp.
29
38
.
37.
Bhat
,
S.
,
Nagesh
,
S.
,
Kambar
,
M. M.
, and
Ukadgaonker
,
V. G.
,
2017
, “
Strain Based Investigation of Mode I Crack Near Strong-Weak Interface in SSY Regime
,”
Int. J. Mech. Sci.
,
123
, pp.
224
237
.
38.
Itou
,
S.
,
2017
, “
Stresses Around a Moving Griffith Crack at an Interface Between a Non-homogeneous Bonding Layer and Two Dissimilar Orthotropic Half-Spaces
,”
Int. J. Mech. Sci.
,
124
, pp.
122
131
.
39.
England
,
A. H.
,
1965
, “
A Crack Between Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
400
402
.
40.
Williams
,
M. L.
,
1959
, “
The Stresses Around a Fault or Crack in Dissimilar Media
,”
Bull. Seismol. Soc. Am.
,
49
(
2
), pp.
199
204
.
41.
Atkinson
,
C.
,
1977
, “
On Stress Singularities and Interfaces in Linear Elastic Fracture Mechanics
,”
Int. J. Fract.
,
13
(
6
), pp.
807
820
.
42.
Comninou
,
M.
,
1978
, “
The Interface Crack in a Shear Field
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
287
290
.
43.
Rice
,
J. R.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
98
103
.
44.
Comninou
,
M.
,
1990
, “
An Overview of Interface Cracks
,”
Eng. Fract. Mech.
,
37
(
1
), pp.
197
208
.
45.
Xu
,
L.
, and
Tippur
,
H. V.
,
1995
, “
Fracture Parameters for Interfacial Cracks: An Experimental Finite Element Study of Crack Tip Fields and Crack Initiation Toughness
,”
Int. J. Fract.
,
71
(
4
), pp.
345
363
.
46.
Singh
,
R. P.
, and
Shukla
,
A.
,
1996
, “
Characterization of Isochromatic Fringe Patterns for a Dynamically Propagating Interface Crack
,”
Int. J. Fract.
,
76
(
4
), pp.
293
310
.
47.
Soh
,
A. K.
,
1999
, “
An Improved Photoelastic Technique for Determining the Mixed-Mode Stress Intensity Factors for Interfacial Cracks in a Bi-material
,”
Compos. Sci. Technol.
,
59
(
7
), pp.
1033
1039
.
48.
Marur
,
P. R.
, and
Tippur
,
H. V.
,
1999
, “
A Strain Gauge Method for Determination of Fracture Parameters in Bimaterial Systems
,”
Eng. Fract. Mech.
,
64
(
1
), pp.
87
104
.
49.
Ravichandran
,
M.
, and
Ramesh
,
K.
,
2004
, “
Determination of Stress Intensity Factors for an Interfacial Crack in a Bi-material by Digital Photoelasticity
,”
Appl. Mech. Mater.
,
1
, pp.
139
146
.
50.
Ravichandran
,
M.
, and
Ramesh
,
K.
,
2005
, “
Evaluation of Stress Field Parameters for an Interface Crack in a Bimaterial by Digital Photoelasticity
,”
J. Strain Anal. Eng. Des.
,
40
(
4
), pp.
327
344
.
51.
Desai
,
C. K.
,
Basu
,
S.
, and
Parameswaran
,
V.
,
2012
, “
Determination of Complex Stress Intensity Factor for a Crack in a Bimaterial Interface Using Digital Image Correlation
,”
Opt. Lasers Eng.
,
50
(
10
), pp.
1423
1430
.
52.
Toya
,
M.
,
1975
, “
Debonding Along the Interface of an Elliptic Rigid Inclusion
,”
Int. J. Fract.
,
11
(
6
), pp.
989
1002
.
53.
Chaudhuri
,
R. A.
,
2006
, “
Three-Dimensional Singular Stress Field Near a Partially Debonded Cylindrical Rigid Fiber
,”
Compos. Struct.
,
72
(
2
), pp.
141
150
.
54.
Antipov
,
Y.
, and
Mkhitaryan
,
S.
,
2017
, “
A Crack Induced by a Thin Rigid Inclusion Partly Debonded From the Matrix
,”
Q. J. Mech. Appl. Math.
,
70
, pp.
153
185
.
55.
Prasad
,
P. B. N.
, and
Simha
,
K. R. Y.
,
2003
, “
Interface Crack Around Circular Inclusion: SIF, Kinking, Debonding Energetics
,”
Eng. Fract. Mech.
,
70
(
2
), pp.
285
307
.
56.
Markenscoff
,
X.
, and
Ni
,
L.
,
1996
, “
The Debonded Interface Anticrack
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
621
627
.
57.
Wang
,
X.
, and
Schiavone
,
P.
,
2020
, “
Asymptotic Field Near the Tip of a Debonded Anticrack in an Anisotropic Elastic Material
,”
Q. J. Mech. Appl. Math.
,
73
(
1
), pp.
76
83
.
58.
Wang
,
G.
, and
Pindera
,
M. J.
,
2016
, “
Locally-Exact Homogenization Theory for Transversely Isotropic Unidirectional Composites
,”
Mech. Res. Commun.
,
78
, pp.
2
14
.
59.
Shu
,
W.
, and
Stanciulescu
,
I.
,
2020
, “
Multiscale Homogenization Method for the Prediction of Elastic Properties of Fiber-Reinforced Composites
,”
Int. J. Solids Struct.
,
203
, pp.
249
263
.
60.
Noselli
,
G.
,
Dal Corso
,
F.
, and
Bigoni
,
D.
,
2010
, “
The Stress Intensity Near a Stiffener Disclosed by Photoelasticity
,”
Int. J. Fract.
,
166
(
1–2
), pp.
91
103
.
61.
Misseroni
,
D.
,
Dal Corso
,
F.
,
Shahzad
,
S.
, and
Bigoni
,
D.
,
2014
, “
Stress Concentration Near Stiff Inclusions: Validation of Rigid Inclusion Model and Boundary Layers by Means of Photoelasticity
,”
Eng. Fract. Mech.
,
121
, pp.
87
97
.
62.
Dal Corso
,
F.
,
Bigoni
,
D.
, and
Gei
,
M.
,
2008
, “
The Stress Concentration Near a Rigid Line Inclusion in a Prestressed, Elastic Material. Part I: Full-Field Solution and Asymptotics
,”
J. Mech. Phys. Solids
,
56
(
3
), pp.
815
838
.
63.
Bigoni
,
D.
,
Dal Corso
,
F.
, and
Gei
,
M.
,
2008
, “
The Stress Concentration Near a Rigid Line Inclusion in a Prestressed, Elastic Material. Part II: Implications on Shear Band Nucleation, Growth and Energy Release Rate
,”
J. Mech. Phys. Solids
,
56
(
3
), pp.
839
857
.
64.
Chen
,
Q.
,
Chatzigeorgiou
,
G.
, and
Meraghni
,
F.
,
2021
, “
Extended Mean-Field Homogenization of Viscoelastic-Viscoplastic Polymer Composites Undergoing Hybrid Progressive Degradation Induced by Interface Debonding and Matrix Ductile Damage
,”
Int. J. Solids Struct.
,
210
, pp.
1
17
.
65.
Marguères
,
P.
, and
Meraghni
,
F.
,
2013
, “
Damage Induced Anisotropy and Stiffness Reduction Evaluation in Composite Materials Using Ultrasonic Wave Transmission
,”
Compos. Part A
,
45
, pp.
134
144
.
66.
Chen
,
Q.
,
Chatzigeorgiou
,
G.
,
Robert
,
G.
, and
Meraghni
,
F.
,
2022
, “
Viscoelastic-Viscoplastic Homogenization of Short Glass-Fiber Reinforced Polyamide Composites (PA66/GF) With Progressive Interphase and Matrix Damage: New Developments and Experimental Validation
,”
Mech. Mater.
,
164
, p.
104081
.
67.
Chen
,
Q.
,
Chatzigeorgiou
,
G.
,
Robert
,
G.
, and
Meraghni
,
F.
,
2023
, “
Combination of Mean-Field Micromechanics and Cycle Jump Technique for Cyclic Response of PA66/GF Composites With Viscoelastic–Viscoplastic and Damage Mechanisms
,”
Acta Mech.
,
234
(
4
), pp.
1
20
.
68.
Pingle
,
P.
,
Sherwood
,
J.
, and
Gorbatikh
,
L.
,
2008
, “
Properties of Rigid-Line Inclusions as Building Blocks of Naturally Occurring Composites
,”
Compos. Sci. Technol.
,
68
(
10–11
), pp.
2267
2272
.
69.
Gakhov
,
F. D.
,
1966
,
Boundary Value Problems
, 1st ed.,
Pergamon Press
,
Oxford
.
70.
England
,
A. H.
,
1971
,
Complex Variable Methods in Elasticity
,
Wiley-Interscience
,
New York
.
71.
Lu
,
J. K.
,
1995
,
Complex Variable Method in Plane Elasticity
,
World Scientific
,
Singapore
.
72.
Barber
,
J. R.
,
2004
,
Elasticity: Solid Mechanics and Its Applications
, 2nd ed.,
Kluwer Academic Publishers
,
Dordrecht
.
73.
Sadd
,
M. H.
,
2014
,
Elasticity: Theory, Applications, and Numerics
, Third ed.,
Elsevier Butterworth–Heinemann
,
Oxford, UK
.
74.
Muskhelishvili
,
N. I.
,
1953
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen
.
75.
Ramesh
,
K.
,
2000
,
Digital Photoelasticity: Advanced Techniques and Applications
,
Springer Verlag
,
Berlin
.
76.
Rice
,
J. R.
, and
Sih
,
G. C.
,
1965
, “
Plane Problems of Cracks in Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
418
423
.
77.
Ramesh
,
K.
,
Yadav
,
A. K.
, and
Pankhawalla
,
V. A.
,
1995
, “
Plotting of Fringe Contours From Finite Element Results
,”
Commun. Numer. Methods Eng.
,
11
(
10
), pp.
839
847
.
You do not currently have access to this content.