Abstract

Natural defects such as nano inclusions and nanocracks are inevitable in dielectric materials. When materials are subjected to mechanical loading, the strain gradient around crack tips and inclusions would become large and induce significant flexoelectric fields. In contrast to classical crack–inclusion problems, the interactions between these flexoelectric fields may locally change the electromechanical behaviors of materials and result in some interesting phenomena. To better understand the crack–inclusion interactions in flexoelectric solids, in this work, we use a collocation mixed finite element method to model and analyze the flexoelectric fields around the crack tip and inclusion. On the basis of the J-integral, we analyze how the flexoelectric effect affect the interaction energy between nanocracks and nearby nano inclusions. This work proposes a new coupling mechanism in crack–inclusion problems and may inspire future experiments in flexoelectric solids.

References

1.
Chandratre
,
S.
, and
Sharma
,
P.
,
2012
, “
Coaxing Graphene to Be Piezoelectric
,”
Appl. Phys. Lett.
,
100
(
2
), p.
023114
.
2.
Mozaffari
,
K.
,
Ahmadpoor
,
F.
,
Deng
,
Q.
, and
Sharma
,
P.
,
2023
, “
A Minimal Physics-Based Model for Musical Perception
,”
Proc. Natl. Acad. Sci. USA
,
120
(
5
), p.
e2216146120
.
3.
Deng
,
Q.
,
Ahmadpoor
,
F.
,
Brownell
,
W. E.
, and
Sharma
,
P.
,
2019
, “
The Collusion of Flexoelectricity and Hopf Bifurcation in the Hearing Mechanism
,”
J. Mech. Phys. Solids.
,
130
(
1
), pp.
245
261
.
4.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A.
,
2013
, “
Flexoelectric Effect in Solids
,”
Ann. Rev. Materials Res.
,
43
(
7
), pp.
387
421
.
5.
Wang
,
B.
,
Gu
,
Y.
,
Zhang
,
S.
, and
Chen
,
L.-Q.
,
2019
, “
Flexoelectricity in Solids: Progress, Challenges, and Perspectives
,”
Prog. Mater. Sci.
,
106
(
1
), p.
100570
.
6.
Wen
,
X.
,
Li
,
D.
,
Tan
,
K.
,
Deng
,
Q.
, and
Shen
,
S.
,
2019
, “
Flexoelectret: An Electret With Tunable Flexoelectric-Like Response
,”
Phys. Rev. Lett.
,
19
(
4
), p.
148001
.
7.
Bhaskar
,
U.
,
Banerjee
,
N.
,
Abdollahi
,
A.
,
Wang
,
Z.
,
Schlom
,
D.
,
Rijnders
,
G.
, and
Catalan
,
G.
,
2016
, “
A Flexoelectric Microelectromechanical System on Silicon
,”
Nat. Nanotechnol.
,
11
(
3
), pp.
263
266
.
8.
Huang
,
W.
,
Kwon
,
S.-R.
,
Zhang
,
S.
,
Yuan
,
F.-G.
, and
Jiang
,
X.
,
2014
, “
A Trapezoidal Flexoelectric Accelerometer
,”
J. Intell. Mater. Syst. Struct.
,
25
(
3
), pp.
271
277
.
9.
Jiang
,
X.
,
Huang
,
W.
, and
Zhang
,
S.
,
2013
, “
Flexoelectric Nano-Generator: Materials, Structures and Devices
,”
Nano Energy
,
2
(
6
), pp.
1079
1092
.
10.
Abdollahi
,
A.
,
Peco
,
C.
,
Millán
,
D.
,
Arroyo
,
M.
,
Catalan
,
G.
, and
Arias
,
I.
,
2015
, “
Fracture Toughening and Toughness Asymmetry Induced by Flexoelectricity
,”
Phys. Rev. B
,
92
(
9
), p.
094101
.
11.
Maranganti
,
R.
,
Sharma
,
N.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green’s Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.
12.
Sladek
,
J.
,
Sladek
,
V.
,
Stanak
,
P.
,
Zhang
,
C.
, and
Tan
,
C.-L.
,
2017
, “
Fracture Mechanics Analysis of Size-Dependent Piezoelectric Solids
,”
Int. J. Solids. Struct.
,
113–114
(
1
), pp.
1
9
.
13.
Xu
,
M.
,
Tian
,
X.
,
Deng
,
Q.
,
Li
,
Q.
, and
Shen
,
S.
,
2023
, “
Directly Observing the Evolution of Flexoelectricity at the Tip of Nanocracks
,”
Nano. Lett.
,
23
(
1
), pp.
66
72
.
14.
Mao
,
S.
, and
Purohit
,
P.
,
2015
, “
Defects in Flexoelectric Solids
,”
J. Mech. Phys. Solids
,
84
(
7
), pp.
95
115
.
15.
Wang
,
H.
,
Jiang
,
X.
,
Wang
,
Y.
,
Stark
,
R. W.
,
van Aken
,
P. A.
,
Mannhart
,
J.
, and
Boschker
,
H.
,
2020
, “
Direct Observation of Huge Flexoelectric Polarization Around Crack Tips
,”
Nano. Lett.
,
20
(
1
), pp.
88
94
.
16.
Cordero
,
K.
,
Kianirad
,
H.
,
Canalias
,
C.
,
Sort
,
J.
, and
Catalan
,
G.
,
2019
, “
Flexoelectric Fracture-Ratchet Effect in Ferroelectrics
,”
Phys. Rev. Lett.
,
122
(
13
), p.
135502
.
17.
Sladek
,
J.
,
Sladek
,
V.
,
Wünsche
,
M.
, and
Kasala
,
J.
,
2018
, “
Gradient Piezoelectricity for Cracks Under an Impact Load
,”
Int. J. Fracture
,
210
(
1
), pp.
95
111
.
18.
Sladek
,
J.
,
Sladek
,
V.
,
Wünsche
,
M.
, and
Zhang
,
C.
,
2018
, “
Effects of Electric Field and Strain Gradients on Cracks in Piezoelectric Solids
,”
Eur. J. Mech. – A/Solids
,
71
(
1
), pp.
187
198
.
19.
Ma
,
L.
,
Lu
,
T. J.
, and
Korsunsky
,
A. M.
,
2005
, “
Vector J-Integral Analysis of Crack Interaction With Pre-existing Singularities
,”
J. Appl. Mech.
,
73
(
5
), pp.
876
883
.
20.
Li
,
R.
, and
Chudnovsky
,
A.
,
1993
, “
Energy Analysis of Crack Interaction With an Elastic Inclusion
,”
Int. J. Fracture
,
63
(
10
), pp.
247
261
.
21.
Li
,
R.
, and
Chudnovsky
,
A.
,
1993
, “
Variation of the Energy Release Rate as a Crack Approaches and Passes Through an Elastic Inclusion
,”
Int. J. Fract.
,
59
(
4
), pp.
R69
R74
.
22.
Li
,
Z.
, and
Yang
,
L.
,
2004
, “
The Near-Tip Stress Intensity Factor for a Crack Partially Penetrating an Inclusion
,”
J. Appl. Mech.
,
71
(
4
), pp.
465
469
.
23.
Li
,
Q.
, and
Lv
,
J.
,
2017
, “
Invariant Integrals of Crack Interaction With an Inhomogeneity
,”
Eng. Fract. Mech.
,
171
(
1
), pp.
76
84
.
24.
Tamate
,
O.
,
1968
, “
Effect of a Circular Inclusion on Stresses Around a Line Crack in a Sheet Under Tension
,”
Int. J. Fracture
,
4
(
1
), pp.
257
266
.
25.
Erdogan
,
F.
,
Gupta
,
G.
, and
Ratwani
,
M.
,
1975
, “
Interaction Between a Circular Inclusion and Arbitrarily Oriented Crack
,”
J. Appl. Mech.
,
41
(
4
), pp.
1007
1013
.
26.
Hsu
,
Y.
, and
Shivakumar
,
V.
,
1976
, “
Interaction Between an Elastic Circular Inclusion and Two Symmetrically Placed Collinear Cracks
,”
Int. J. Fracture
,
12
(
4
), pp.
619
630
.
27.
Xiao
,
Z.
, and
Pae
,
K.
,
1991
, “
The Interaction Between a Penny-Shaped Crack and a Spherical Inhomogeneity in an Infinite Solid Under Uniaxial Tension
,”
Acta Mech.
,
90
(
3
), pp.
91
104
.
28.
Guo
,
Y.
, and
Li
,
Q.
,
2017
, “
Material Configurational Forces Applied to Mixed Mode Crack Propagation
,”
Theor. Appl. Fract. Mec.
,
89
(
1
), pp.
147
157
.
29.
Liang
,
X.
,
Hu
,
S.
, and
Shen
,
S.
,
2014
, “
A New Bernoulli-Euler Beam Model Based on a Simplified Strain Gradient Elasticity Theory and Its Applications
,”
Composite Struct.
,
111
(
1
), pp.
317
323
.
30.
Zhang
,
R.
,
Liang
,
X.
, and
Shen
,
S.
,
2015
, “
A Timoshenko Dielectric Beam Model With Flexoelectric Effect
,”
Meccanica
,
51
(
5
), pp.
1181
1188
.
31.
Deng
,
Q.
,
2017
, “
Size and Shape Effects on the Electromechanical Behavior of a Flexoelectric Truncated Cone
,”
J. Appl. Mech.
,
84
(
10
), p.
101007
.
32.
Sladek
,
J.
,
Stanak
,
P.
,
Han
,
Z.
,
Sladek
,
V.
, and
Atluri
,
S.
,
2013
, “
Applications of the Mlpg Method in Engineering & Sciences: A Review
,”
CMES – Computer Model. Eng. Sci.
,
92
(
6
), pp.
423
475
.
33.
Abdollahi
,
A.
,
Peco
,
C.
,
Millán
,
D.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2014
, “
Computational Evaluation of the Flexoelectric Effect in Dielectric Solids
,”
J. Appl. Phys.
,
116
(
9
), p.
093502
.
34.
Codony
,
D.
,
Marco
,
O.
,
Fernández-Méndez
,
S.
, and
Arias
,
I.
,
2019
, “
An Immersed Boundary Hierarchical B-spline Method for Flexoelectricity
,”
Comput. Methods. Appl. Mech. Eng.
,
354
(
1
), pp.
750
782
.
35.
Yvonnet
,
J.
, and
Liu
,
L.
,
2017
, “
A Numerical Framework for Modeling Flexoelectricity and Maxwell Stress in Soft Dielectrics at Finite Strains
,”
Comput. Methods. Appl. Mech. Eng.
,
313
(
1
), pp.
450
482
.
36.
Mao
,
S.
,
Purohit
,
P.
, and
Aravas
,
N.
,
2016
, “
Mixed Finite-Element Formulations in Piezoelectricity and Flexoelectricity
,”
Proc. Royal Soc. A: Math. Phys. Engi. Sci.
,
472
(
6
), p.
20150879
.
37.
Deng
,
F.
,
Deng
,
Q.
,
Yu
,
W.
, and
Shen
,
S.
,
2017
, “
Mixed Finite Elements for Flexoelectric Solids
,”
J. Appl. Mech.
,
84
(
8
), p.
081004
.
38.
Tian
,
X.
,
Sladek
,
J.
,
Sladek
,
V.
,
Deng
,
Q.
, and
Li
,
Q.
,
2021
, “
A Collocation Mixed Finite Element Method for the Analysis of Flexoelectric Solids
,”
Int. J. Solids. Struct.
,
217–218
(
1
), pp.
27
39
.
39.
Beattie
,
A.
, and
Samara
,
G.
,
2003
, “
Pressure Dependence of the Elastic Constants of SrTiO3
,”
J. Appl. Phys.
,
42
(
6
), pp.
2376
2381
.
40.
Sumigawa
,
T.
,
Shimada
,
T.
,
HUANG
,
K.
,
Mizuno
,
Y.
,
Hagiwara
,
Y.
,
Ozaki
,
N.
, and
Kitamura
,
T.
,
2022
, “
Ultrasmall-Scale Brittle Fracture Initiated From a Dislocation in SrTiO3
,”
Nano. Lett.
,
22
(
5
), pp.
2077
2084
.
41.
Lu
,
Y.
,
Jia
,
D.
,
Gao
,
F.
,
Chen
,
Z.
, and
Hu
,
T.
,
2014
, “
First-Principles Study on the Elastic Properties of Sr–Ti–O Ceramics
,”
Solid State Commun.
,
182
(
1
), pp.
43
46
.
42.
Hong
,
J.
, and
Vanderbilt
,
D.
,
2013
, “
First-Principles Theory and Calculation of Flexoelectricity
,”
Phys. Rev. B
,
88
(
17
), p.
174107
.
43.
Noether
,
E.
,
1971
, “
Invariant Variation Problems
,”
Transp. Statist. Phys.
,
1
(
3
), pp.
186
207
.
44.
Li
,
Q.
,
Lv
,
J.
,
Guo
,
Y.
, and
Tian
,
X.
,
2018
, “
A Consistent Framework of Material Configurational Mechanics in Piezoelectric Materials
,”
Acta Mech.
,
229
(
1
), pp.
299
322
.
45.
Tian
,
X.
,
Xu
,
M.
,
Zhou
,
H.
,
Deng
,
Q.
,
Li
,
Q.
,
Sladek
,
J.
, and
Sladek
,
V.
,
2022
, “
Analytical Studies on Mode III Fracture in Flexoelectric Solids
,”
ASME J. Appl. Mech.
,
89
(
4
), p.
041006
.
46.
Tian
,
X.
,
Li
,
Q.
, and
Deng
,
Q.
,
2019
, “
The J-Integral in Flexoelectric Solids
,”
Int. J. Fracture
,
215
(
1
), pp.
67
76
.
47.
Moran
,
B.
, and
Shih
,
C.
,
1987
, “
A General Treatment of Crack Tip Contour Integrals
,”
Int. J. Fracture
,
35
(
4
), pp.
295
310
.
48.
Shivakumar
,
K.
, and
Raju
,
I.
,
1992
, “
An Equivalent Domain Integral Method for Three-Dimensional Mixed-Mode Fracture Problems
,”
Eng. Fract. Mech.
,
42
(
6
), pp.
935
959
.
You do not currently have access to this content.