Abstract

Multistable structures can maintain multiple steady states without additional loads. However, the presence of geometric and material nonlinearities in multistable structures adds complexity and difficulty to their optimal design. In this paper, a novel method is proposed to achieve multistability in conical structures by local cross-section modification. A conical multistable structure with varying cross section is designed based on this method. The finite element model considering the nonlinear large deformation mechanics and rubber material’s hyperelasticity was established for analyzing the multistable properties and meanwhile verified by experiments. The influence of geometric parameters of the cross section (thickness, width, and position) on the multistabilities (number, distribution, and snapping threshold) was analyzed. The steady-state number can be effectively used to redesign the multistable properties by local reinforcement. It is also observed that the quasi-zero stiffness region of the force–displacement curve can be extended by 61.7% compared to the original conical structure. Moreover, the optimized QZS structure allows for an actively designable stepped dynamic response under forced vibration.

References

1.
Hufenbach
,
W.
,
Gude
,
M.
, and
Czulak
,
A.
,
2006
, “
Actor-Initiated Snap-Through of Unsymmetric Composites With Multiple Deformation States
,”
J. Mater. Process. Technol.
,
175
(
1–3
), pp.
225
230
.
2.
Chen
,
G. M.
, and
Du
,
Y. L.
,
2013
, “
Double-Young Tristable Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011007
.
3.
Thill
,
C.
,
Etches
,
J. A.
,
Bond
,
I. P.
,
Potter
,
K. D.
, and
Weaver
,
P. M.
,
2010
, “
Composite Corrugated Structures for Morphing Wing Skin Applications
,”
Smart Mater. Struct.
,
19
(
12
), p.
124009
.
4.
Kebadze
,
E.
,
Guest
,
S. D.
, and
Pellegrino
,
S.
,
2004
, “
Bistable Prestressed Shell Structures
,”
Int. J. Solids Struct.
,
41
(
11–12
), pp.
2801
2820
.
5.
Zhao
,
J.
,
Sun
,
C.
,
Kacem
,
N.
,
Wang
,
H.
,
Gao
,
R.
,
Liu
,
P.
, and
Huang
,
Y.
,
2018
, “
A Nonlinear Resonant Mass Sensor With Enhanced Sensitivity and Resolution Incorporating Compressed Bistable Beam
,”
J. Appl. Phys.
,
124
(
16
), p.
164503
.
6.
Aza
,
C.
,
Pirrera
,
A.
, and
Schenk
,
M.
,
2019
, “
Multistable Morphing Mechanisms of Nonlinear Springs
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051014
.
7.
Pan
,
D. K.
,
Ma
,
B. B.
, and
Dai
,
F. H.
,
2017
, “
Experimental Investigation of Broadband Energy Harvesting of a Bi-Stable Composite Piezoelectric Plate
,”
Smart Mater. Struct.
,
26
(
3
), p.
035045
.
8.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
9.
Chen
,
G. M.
,
Han
,
Q.
, and
Jin
,
K. F.
,
2020
, “
A Fully Compliant Tristable Mechanism Employing Both Tensural and Compresural Segments
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011003
.
10.
Seffen
,
K. A.
,
2006
, “
Mechanical Memory Metal: A Novel Material for Developing Morphing Engineering Structures
,”
Scr. Mater.
,
55
(
4
), pp.
411
414
.
11.
Chen
,
G.
,
Ma
,
F.
,
Hao
,
G.
, and
Zhu
,
W.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam Constraint Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
.
12.
Hao
,
G. B.
, and
Kong
,
X. W.
,
2012
, “
Design and Modeling of a Large-Range Modular Xyz Compliant Parallel Manipulator Using Identical Spatial Modules
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021009
.
13.
Zhao
,
J.
,
Zhang
,
J.
,
Wang
,
K. W.
,
Cheng
,
K.
,
Wang
,
H.
,
Huang
,
Y.
, and
Liu
,
P.
,
2020
, “
On the Nonlinear Snap-Through of Arch-Shaped Clamped-Clamped Bistable Beams
,”
ASME J. Appl. Mech.
,
87
(
2
), p.
024502
.
14.
Camescasse
,
B.
,
Fernandes
,
A.
, and
Pouget
,
J.
,
2014
, “
Bistable Buckled Beam and Force Actuation: Experimental Validations
,”
Int. J. Solids Struct.
,
51
(
9
), pp.
1750
1757
.
15.
Palathingal
,
S.
, and
Ananthasuresh
,
G. K.
,
2019
, “
Analysis and Design of Fixed-Fixed Bistable Arch-Profiles Using a Bilateral Relationship
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031002
.
16.
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2011
, “
Prestressed Morphing Bistable and Neutrally Stable Shells
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011002
.
17.
Williams
,
M. D.
,
van Keulen
,
F.
, and
Sheplak
,
M.
,
2012
, “
Modeling of Initially Curved Beam Structures for Design of Multistable Mems
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011006
.
18.
Hua
,
J.
,
Lei
,
H.
,
Gao
,
C. F.
, and
Fang
,
D.
,
2022
, “
A Novel Design of Multistable Metastructure With Nonuniform Cross Section
,”
ASME J. Appl. Mech.
,
89
(
5
), p.
051010
.
19.
Zou
,
H. X.
,
Zhang
,
W. M.
,
Wei
,
K. X.
,
Li
,
W. B.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2016
, “
A Compressive-Mode Wideband Vibration Energy Harvester Using a Combination of Bistable and Flextensional Mechanisms
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121005
.
20.
Ni
,
N.
,
Zhang
,
L.
,
Zhou
,
J.
,
Wang
,
Y.
, and
Liu
,
F.
,
2014
, “
Dielectric Elastomer Cantilever Beam Sensor
,”
Conference on Electroactive Polymer Actuators and Devices (EAPAD)
,
San Diego, CA
,
Mar. 10–13
, 90561M.
21.
Hao
,
G. B.
, and
Mullins
,
J.
,
2016
, “
On the Comprehensive Static Characteristic Analysis of a Translational Bistable Mechanism
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
230
(
20
), pp.
3803
3817
.
22.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
23.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
657
666
.
24.
Zhao
,
J.
,
Huang
,
Y.
,
Gao
,
R. J.
, and
Wang
,
H. X.
,
2011
, “
Dynamics of a Bistable Mechanism With Parallel Beams and Permanent Magnets
,”
Adv. Mater. Res.
,
308–310
(
2011
), pp.
508
512
. www.scientific.net/AMR.308-310.508
25.
Chen
,
G. M.
, and
Ma
,
F. L.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
26.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.
27.
Krylov
,
S.
,
Ilic
,
B. R.
, and
Lulinsky
,
S.
,
2011
, “
Bistability of Curved Microbeams Actuated by Fringing Electrostatic Fields
,”
Nonlinear Dyn.
,
66
(
3
), pp.
403
426
.
28.
Pirrera
,
A.
,
Avitabile
,
D.
, and
Weaver
,
P. M.
,
2010
, “
Bistable Plates for Morphing Structures: A Refined Analytical Approach With High-Order Polynomials
,”
Int. J. Solids Struct.
,
47
(
25–26
), pp.
3412
3425
.
29.
Norman
,
A. D.
,
Golabchi
,
M. R.
,
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2008
, “
Multistable Textured Shell Structures
,”
Adv. Sci. Technol.
,
54
(
2008
), pp.
168
173
. www.scientific.net/AST.54.168
30.
Wang
,
N.
,
Cui
,
C.
,
Chen
,
B.
,
Guo
,
H.
, and
Zhang
,
X.
,
2019
, “
Design of Translational and Rotational Bistable Actuators Based on Dielectric Elastomer
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041011
.
31.
Arronche
,
L.
,
Martínez
,
I.
,
La Saponara
,
V.
, and
Ledesma
,
E.
,
2013
, “
Finite Element Modeling and Experimental Characterization of Enhanced Hybrid Composite Structures for Improved Crashworthiness
,”
ASME J. Appl. Mech.
,
80
(
5
), p.
050902
.
32.
Li
,
T.
,
Zou
,
Z.
,
Mao
,
G.
, and
Qu
,
S.
,
2014
, “
Electromechanical Bistable Behavior of a Novel Dielectric Elastomer Actuator
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041019
.
33.
Luxenburg
,
Y.
, and
Givli
,
S.
,
2021
, “
The Static Response of Axisymmetric Conical Shells Exhibiting Bistable Behavior
,”
ASME J. Appl. Mech.
,
88
(
11
), p.
111001
.
34.
Bowen
,
C. R.
,
Betts
,
D. N.
,
Giddings
,
P. F.
,
Salo
,
A. I. T.
, and
Kim
,
H. A.
,
2012
, “
A Study of Bistable Laminates of Generic Lay-Up for Adaptive Structures
,”
Strain
,
48
(
3
), pp.
235
240
.
35.
Dai
,
F. H.
,
Li
,
H.
, and
Du
,
S. Y.
,
2013
, “
Cured Shape and Snap-Through of Bistable Twisting Hybrid [0/90/Metal](T) Laminates
,”
Compos. Sci. Technol.
,
86
(
2013
), pp.
76
81
.
36.
Zhang
,
Z.
,
Wu
,
H.
,
He
,
X.
,
Wu
,
H.
,
Bao
,
Y.
, and
Chai
,
G.
,
2013
, “
The Bistable Behaviors of Carbon-Fiber/Epoxy Anti-Symmetric Composite Shells
,”
Compos. B. Eng.
,
47
(
2013
), pp.
190
199
.
37.
Guo
,
Q.
,
Zheng
,
H.
,
Chen
,
W.
, and
Chen
,
Z.
,
2014
, “
Modeling Bistable Behaviors in Morphing Structures Through Finite Element Simulations
,”
Bio-Med. Mater. Eng.
,
24
(
1
), pp.
557
562
.
38.
Wang
,
W.
, and
Qiu
,
X. M.
,
2018
, “
Coupling of Creases and Shells
,”
ASME J. Appl. Mech.
,
85
(
1
), p.
011009
.
39.
Lee
,
A. J.
,
Moosavian
,
A.
, and
Inman
,
D. J.
,
2017
, “
A Piezoelectrically Generated Bistable Laminate for Morphing
,”
Mater. Lett.
,
190
, pp.
123
126
.
40.
Restrepo
,
D.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
,
2015
, “
Phase Transforming Cellular Materials
,”
Extreme Mech. Lett.
,
4
, pp.
52
60
.
41.
Dai
,
F. H.
,
Li
,
H.
, and
Du
,
S. Y.
,
2013
, “
A Multi-Stable Lattice Structure and Its Snap-Through Behavior Among Multiple States
,”
Compos. Struct.
,
97
, pp.
56
63
.
42.
Chen
,
T.
,
Pauly
,
M.
, and
Reis
,
P. M.
,
2021
, “
A Reprogrammable Mechanical Metamaterial With Stable Memory
,”
Nature
,
589
(
7842
), pp.
386
390
.
43.
James
,
A. G.
,
Green
,
A.
, and
Simpson
,
G. M.
,
1975
, “
Strain Energy Functions of Rubber 1 Characterization of Gum Vulcanizates
,”
J. Appl. Polym. Sci.
,
19
(
7
), pp.
2033
2058
.
44.
Kojima
,
M.
,
Tosaka
,
M.
,
Ikeda
,
Y.
, and
Kohjiya
,
S.
,
2005
, “
Devulcanization of Carbon Black Filled Natural Rubber Using Supercritical Carbon Dioxide
,”
J. Appl. Polym. Sci.
,
95
(
1
), pp.
137
143
.
45.
Kim
,
B.
,
Lee
,
S. B.
,
Lee
,
J.
,
Cho
,
S.
,
Park
,
H.
,
Yeom
,
S.
, and
Park
,
S. H.
,
2012
, “
A Comparison Among Neo-Hookean Model, Mooney-Rivlin Model, and Ogden Model for Chloroprene Rubber
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
759
764
.
46.
Kamarul Bahrain
,
S. H.
, and
Mahmud
,
J.
,
2017
, “
Parametric Investigation of Mooney-Rivlin Material Constants on Silicone Biocomposite
,”
Mater. Sci. Forum
,
882
, pp.
51
55
. www.scientific.net/MSF.882.51
47.
Li
,
Q.
,
Zhao
,
J. C.
, and
Zhao
,
B.
,
2009
, “
Fatigue Life Prediction of a Rubber Mount Based on Test of Material Properties and Finite Element Analysis
,”
Eng. Fail. Anal.
,
16
(
7
), pp.
2304
2310
.
48.
Treloar
,
L. R. G.
,
1976
, “
Mechanics of Rubber Elasticity
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
351
(
1666
), pp.
301
330
.
49.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Cottrell
,
J. A.
,
Evans
,
J. A.
,
Hughes
,
T. J. R.
,
Lipton
,
S.
,
Scott
,
M. A.
, and
Sederberg
,
T. W.
,
2010
, “
Isogeometric Analysis Using T-Splines
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
5–8
), pp.
229
263
.
50.
Rabczuk
,
T.
,
Areias
,
P. M. A.
, and
Belytschko
,
T.
,
2007
, “
A Meshfree Thin Shell Method for Non-Linear Dynamic Fracture
,”
Int. J. Numer. Methods Eng.
,
72
(
5
), pp.
524
548
.
51.
Zhang
,
J.
,
Wang
,
X.
,
Zhao
,
J.
,
Wang
,
H.
,
Liu
,
P.
, and
Huang
,
Y.
,
2023
, “
Nonlinear Bifurcations of a Circular Dielectric-Elastomer Resonator Based on a Modified Incremental Harmonic Balance Method
,”
J. Appl. Phys.
,
133
(
18
), p.
185105
.
You do not currently have access to this content.