Abstract

Effective thermal conductivity and Young's modulus of periodic unit cell geometries are widely studied in the literature. This paper compares and contrasts strut-based unit cells against surface-based unit cells obtained by subtracting spheres from a solid cube. In order to understand the reason for the difference in the behavior of effective thermal conductivity of surface-based and strut-based unit cell geometries and the difference in the behavior of Young's modulus of surface-based and strut-based unit cell geometries, the effect of material distribution on effective thermal conductivity and Young's modulus is studied here. The material in the unit cell is varied in two ways, i.e., by changing the material distribution on the cell wall (partially closed unit cell) and changing the material distribution across the strut of unit cell geometry. It is found that the distribution of material on the wall of the unit cell improves the effective thermal conductivity and Young's modulus. In contrast, a narrow cross-section area in the unit cell reduces the effective thermal conductivity and Young's modulus. Using the studied effect of material distribution on effective thermal conductivity and Young's modulus, the reason for the difference in properties of surface-based and strut-based unit cell geometry is qualitatively explained. Partially closed unit cell geometries introduced here for studying the effect of material distribution on cell walls give a wide range of effective thermal conductivity and Young's modulus for the same porosity with a change in pore opening ratio.

References

1.
Ramamoorthy
,
S.
, and
Krishnan
,
S.
,
2018
, “
Towards Thermal-Acoustic Co-Design of Noise-Reducing Heat Sinks
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
8
(
8
), pp.
1411
1419
.
2.
Wadley
,
H. N. G.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Philos. Trans. R. Soc., A
,
364
(
1838
), pp.
31
68
.
3.
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Fluid Flow and Heat Transfer Characteristics of Octet Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
137
, pp.
253
261
.
4.
Bracconi
,
M.
,
Ambrosetti
,
M.
,
Maestri
,
M.
,
Groppi
,
G.
, and
Tronconi
,
E.
,
2020
, “
Analysis of the Effective Thermal Conductivity of Isotropic and Anisotropic Periodic Open Cellular Structures for the Intensification of Catalytic Processes
,”
Chem. Eng. Process.: Process Intensif.
,
158
, p.
108169
.
5.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
Simulation of Thermal Transport in Open-Cell Metal Foams: Effect of Periodic Unit-Cell Structure
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
2
), p.
024503
.
6.
Deshmukh
,
S.
,
Borkar
,
A.
,
Alankar
,
A.
,
Krishnan
,
S.
, and
Ramamoorthy
,
S.
,
2020
, “
A Priori Determination of the Elastic and Acoustic Responses of Periodic Poroelastic Materials
,”
Appl. Acoust.
,
169
, p.
107455
.
7.
Maconachie
,
T.
,
Leary
,
M.
,
Lozanovski
,
B.
,
Zhang
,
X.
,
Qian
,
M.
,
Faruque
,
O.
, and
Brandt
,
M.
,
2019
, “
SLM Lattice Structures: Properties, Performance, Applications and Challenges
,”
Mater. Des.
,
183
, p.
108137
.
8.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
8
), pp.
793
799
.
9.
Deshmukh
,
S.
,
Ronge
,
H.
, and
Ramamoorthy
,
S.
,
2019
, “
Design of Periodic Foam Structures for Acoustic Applications: Concept, Parametric Study and Experimental Validation
,”
Mater. Des.
,
175
, p.
107830
.
10.
Sachan
,
S.
,
Kumar
,
S.
,
Krishnan
,
S.
, and
Ramamoorthy
,
S.
,
2020
, “
Impact of Entry-Exit Loss on the Measurement of Flow Resistivity of Porous Materials
,”
AIP Adv.
,
10
(
10
), p.
105031
.
11.
Choudhary
,
R.
,
Sachan
,
S.
,
Krishnan
,
S.
, and
Ramamoorthy
,
S.
,
2020
, “
Design and Parametric Study of Macro-Structure of Foams for Combined High Absorption and Low Pressure Drop
,”
Appl. Acoust.
,
166
, p.
107358
.
12.
Deshmukh
,
S.
,
Kumar
,
S.
,
Wagh
,
A.
,
Krishnan
,
S.
, and
Ramamoorthy
,
S.
,
2022
, “
Selection of Periodic Cellular Structures for Multifunctional Applications Directly Based on Their Unit Cell Geometry
,”
Int. J. Mech. Sci.
,
220
, p.
107133
.
13.
Schuetz
,
M. A.
, and
Glicksman
,
L. R.
,
1984
, “
A Basic Study of Heat Transfer Through Foam Insulation
,”
J. Cell. Plast.
,
20
(
2
), pp.
114
121
.
14.
Bai
,
X.
,
Hasan
,
C.
,
Mobedi
,
M.
, and
Nakayama
,
A.
,
2018
, “
A General Expression for the Stagnant Thermal Conductivity of Stochastic and Periodic Structures
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
5
), p.
052001
.
15.
Coquard
,
R.
, and
Baillis
,
D.
,
2009
, “
Numerical Investigation of Conductive Heat Transfer in High-Porosity Foams
,”
Acta Mater.
,
57
(
18
), pp.
5466
5479
.
16.
Gholami
,
M. S.
,
Doutres
,
O.
, and
Atalla
,
N.
,
2017
, “
Effect of Microstructure Closed-Pore Content on the Mechanical Properties of Flexible Polyurethane Foam
,”
Int. J. Solids Struct.
,
112
, pp.
97
105
.
17.
Solidworks, User’s Guide, 2015
18.
Fluent Inc.
,
2014
,
User’s Guide for FLUENT 16.0.
19.
Buffel
,
B.
,
Desplentere
,
F.
,
Bracke
,
K.
, and
Verpoest
,
I.
,
2014
, “
Modelling Open Cell-Foams Based on the Weaire-Phelan Unit Cell With a Minimal Surface Energy Approach
,”
Int. J. Solids Struct.
,
51
(
19–20
), pp.
3461
3470
.
20.
Brown
,
R. J. S.
,
1980
, “
Connection Between Formation Factor for Electrical Resistivity and Fluid-Solid Coupling Factor in Biot’s Equations for Acoustic Waves in Fluid-Filled Porous Media
,”
Geophysics
,
45
(
8
), pp.
1269
1275
.
21.
Lemlich
,
R.
,
1978
, “
A Theory for the Limiting Conductivity of Polyhedral Foam at Low Density
,”
J. Colloid Interface Sci.
,
64
(
1
), pp.
107
110
.
22.
Bai
,
X.
, and
Nakayama
,
A.
,
2019
, “
An Analytical and Numerical Estimation of the Effective Thermal Conductivity of Complex Metal Frame Core Structures
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
2
), p.
024504
.
23.
Maxwell
,
J. C.
,
1954
,
A Treatise on Electricity and Magnetism
, 3rd ed.,
Publications Inc.
,
New York
.
24.
Bianchi
,
E.
,
Schwieger
,
W.
, and
Freund
,
H.
,
2016
, “
Assessment of Periodic Open Cellular Structures for Enhanced Heat Conduction in Catalytic Fixed-Bed Reactors
,”
Adv. Eng. Mater.
,
18
(
4
), pp.
608
614
.
25.
Bracconi
,
M.
,
Ambrosetti
,
M.
,
Maestri
,
M.
,
Groppi
,
G.
, and
Tronconi
,
E.
,
2018
, “
A Fundamental Analysis of the Influence of the Geometrical Properties on the Effective Thermal Conductivity of Open-Cell Foams
,”
Chem. Eng. Process.: Process Intensif.
,
129
, pp.
181
189
.
26.
Gong
,
L.
,
Kyriakides
,
S.
, and
Jang
,
W. Y.
,
2005
, “
Compressive Response of Open-Cell Foams. Part I: Morphology and Elastic Properties
,”
Int. J. Solids Struct.
,
42
(
5–6
), pp.
1355
1379
.
27.
Jang
,
W. Y.
,
Kraynik
,
A. M.
, and
Kyriakides
,
S.
,
2008
, “
On the Microstructure of Open-Cell Foams and Its Effect on Elastic Properties
,”
Int. J. Solids Struct.
,
45
(
7–8
), pp.
1845
1875
.
28.
Jia
,
H.
,
Lei
,
H.
,
Wang
,
P.
,
Meng
,
J.
,
Li
,
C.
,
Zhou
,
H.
,
Zhang
,
X.
, and
Fang
,
D.
,
2020
, “
An Experimental and Numerical Investigation of Compressive Response of Designed Schwarz Primitive Triply Periodic Minimal Surface With Non-Uniform Shell Thickness
,”
Extrem. Mech. Lett.
,
37
, p.
100671
.
29.
Hong
,
S. T.
, and
Herling
,
D. R.
,
2007
, “
Effects of Surface Area Density of Aluminum Foams on Thermal Conductivity of Aluminum Foam-Phase Change Material Composites
,”
Adv. Eng. Mater.
,
9
(
7
), pp.
554
557
.
You do not currently have access to this content.