Abstract

Chiral metamaterials with artificially engineered subwavelength structures can effectively couple incident waves and lead diverse electromagnetic responses to various circular polarizations. Here, we designed and fabricated an origami-inspired reconfigurable three-dimensional (3D) chiral metamaterial, whose circular dichroism can be dynamically controlled by simple mechanical stretch of its bonded elastomer substrate. The chiral metamaterial was obtained from a patterned planar achiral metasurface through mechanically guided 3D assembly based on the prestrain approach, which ensures deterministic and uniform deformations for each building block during stretching. Numerical simulations and experimental observations were carried out to illustrate the deformation mechanism and the electromagnetic response of the metamaterials under the applied strain. It is shown that the transmissions and chiroptical activities can be continuously tuned from complete spin selectivity to partial spin selectivity when the applied strain increases. The maximum circular dichroism was experimentally measured as high as 0.98, which can be even adjusted to near zero by mechanical stretching. Our work demonstrated an easily operated and promising way to control the chirality of origami-inspired metamaterial in the microwave region, which can be further extended to the terahertz frequency biosensing, imaging, and spectroscope.

References

1.
Cheng
,
Z.
, and
Cheng
,
Y.
,
2019
, “
A Multi-Functional Polarization Convertor Based on Chiral Metamaterial for Terahertz Waves
,”
Opt. Commun.
,
435
, pp.
178
182
.
2.
Pisano
,
G.
,
Ade
,
P. A. R.
, and
Tucker
,
C.
,
2016
, “
Experimental Realization of an Achromatic Magnetic Mirror Based on Metamaterials
,”
Appl. Opt.
,
55
(
18
), pp.
4814
4819
.
3.
Cheng
,
Y.
,
Fan
,
J.
,
Luo
,
H.
,
Chen
,
F.
,
Feng
,
N.
,
Mao
,
X.
, and
Gong
,
R.
,
2019
, “
Dual-Band and High-Efficiency Circular Polarization Conversion Via Asymmetric Transmission With Anisotropic Metamaterial in the Terahertz Region
,”
Opt. Mater. Express
,
9
(
3
), pp.
1365
1376
.
4.
Esfandyarpour
,
M.
,
Garnett
,
E. C.
,
Cui
,
Y.
,
McGehee
,
M. D.
, and
Brongersma
,
M. L.
,
2014
, “
Metamaterial Mirrors in Optoelectronic Devices
,”
Nat. Nanotechnol.
,
9
(
7
), pp.
542
547
.
5.
Smith
,
D. R.
,
Pendry
,
J. B.
, and
Wiltshire
,
M. C. K.
,
2004
, “
Metamaterials and Negative Refractive Index
,”
Science
,
305
(
5685
), pp.
788
792
.
6.
Soukoulis
,
C. M.
,
Linden
,
S.
, and
Wegener
,
M.
,
2007
, “
Negative Refractive Index at Optical Wavelengths
,”
Science
,
315
(
5808
), pp.
47
49
.
7.
Viet
,
D. T.
,
Hien
,
N. T.
,
Tuong
,
P. V.
,
Minh
,
N. Q.
,
Trang
,
P. T.
,
Le
,
L. N.
,
Lee
,
Y. P.
, and
Lam
,
V. D.
,
2014
, “
Perfect Absorber Metamaterials: Peak, Multi-Peak and Broadband Absorption
,”
Opt. Commun.
,
322
, pp.
209
213
.
8.
Cao
,
T.
,
Wei
,
C.-W.
,
Simpson
,
R. E.
,
Zhang
,
L.
, and
Cryan
,
M. J.
,
2014
, “
Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies
,”
Sci. Rep.
,
4
(
1
), pp.
1
8
.
9.
Landy
,
N. I.
,
Sajuyigbe
,
S.
,
Mock
,
J. J.
,
Smith
,
D. R.
, and
Padilla
,
W. J.
,
2008
, “
Perfect Metamaterial Absorber
,”
Phys. Rev. Lett.
,
100
(
20
), p.
207402
.
10.
Cai
,
T.
,
Zheng
,
B.
,
Lou
,
J.
,
Shen
,
L.
,
Yang
,
Y.
,
Tang
,
S.
,
Li
,
E.
,
Qian
,
C.
, and
Chen
,
H.
,
2022
, “
Experimental Realization of a Superdispersion-Enabled Ultrabroadband Terahertz Cloak
,”
Adv. Mater.
,
38
(
34
), p.
2205053
.
11.
Schurig
,
D.
,
Mock
,
J. J.
,
Justice
,
B. J.
,
Cummer
,
S. A.
,
Pendry
,
J. B.
,
Starr
,
A. F.
, and
Smith
,
D. R.
,
2006
, “
Metamaterial Electromagnetic Cloak at Microwave Frequencies
,”
Science
,
314
(
5801
), pp.
977
980
.
12.
Liu
,
R.
,
Ji
,
C.
,
Mock
,
J. J.
,
Chin
,
J. Y.
,
Cui
,
T. J.
, and
Smith
,
D. R.
,
2009
, “
Broadband Ground-Plane Cloak
,”
Science
,
323
(
5912
), pp.
366
369
.
13.
Shin
,
D.
,
Urzhumov
,
Y.
,
Jung
,
Y.
,
Kang
,
G.
,
Baek
,
S.
,
Choi
,
M.
,
Park
,
H.
,
Kim
,
K.
, and
Smith
,
D. R.
,
2012
, “
Broadband Electromagnetic Cloaking With Smart Metamaterials
,”
Nat. Commun.
,
3
(
1
), pp.
1
8
.
14.
Liu
,
Z.
,
Du
,
H.
,
Li
,
J.
,
Lu
,
L.
,
Li
,
Z.-Y.
, and
Fang
,
N. X.
,
2018
, “
Nano-Kirigami With Giant Optical Chirality
,”
Sci. Adv.
,
4
(
7
), p.
eaat4436
.
15.
Wang
,
C.
,
Li
,
Z.
,
Pan
,
R.
,
Liu
,
W.
,
Cheng
,
H.
,
Li
,
J.
,
Zhou
,
W.
,
Tian
,
J.
, and
Chen
,
S.
,
2020
, “
Giant Intrinsic Chirality in Curled Metasurfaces
,”
ACS Photonics
,
7
(
12
), pp.
3415
3422
.
16.
Cao
,
T.
,
Wei
,
C.
,
Mao
,
L.
, and
Li
,
Y.
,
2014
, “
Extrinsic 2D Chirality: Giant Circular Conversion Dichroism From a Metal-Dielectric-Metal Square Array
,”
Sci. Rep.
,
4
(
1
), pp.
1
7
.
17.
Wang
,
W.
,
Besteiro
,
L. V.
,
Liu
,
T.
,
Wu
,
C.
,
Sun
,
J.
,
Yu
,
P.
,
Chang
,
L.
,
Wang
,
Z.
, and
Govorov
,
A. O.
,
2019
, “
Generation of Hot Electrons With Chiral Metamaterial Perfect Absorbers: Giant Optical Chirality for Polarization-Sensitive Photochemistry
,”
ACS Photonics
,
6
(
12
), pp.
3241
3252
.
18.
Cai
,
W.
,
Genov
,
D. A.
, and
Shalaev
,
V. M.
,
2005
, “
Superlens Based on Metal-Dielectric Composites
,”
Phys. Rev. B
,
72
(
19
), p.
193101
.
19.
Yuan
,
G.
,
Rogers
,
K. S.
,
Rogers
,
E. T. F.
, and
Zheludev
,
N. I.
,
2019
, “
Far-Field Superoscillatory Metamaterial Superlens
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064016
.
20.
Tao
,
H.
,
Strikwerda
,
A. C.
,
Fan
,
K.
,
Padilla
,
W. J.
,
Zhang
,
X.
, and
Averitt
,
R. D.
,
2009
, “
Reconfigurable Terahertz Metamaterials
,”
Phys. Rev. Lett.
,
103
(
14
), p.
147401
.
21.
Driscoll
,
T.
,
Kim
,
H.-T.
,
Chae
,
B.-G.
,
Kim
,
B.-J.
,
Lee
,
Y.-W.
,
Jokerst
,
N. M.
,
Palit
,
S.
,
Smith
,
D. R.
,
Di Ventra
,
M.
, and
Basov
,
D. N.
,
2009
, “
Memory Metamaterials
,”
Science
,
325
(
5947
), pp.
1518
1521
.
22.
Rakich
,
P. T.
,
Popović
,
M. A.
,
Soljačić
,
M.
, and
Ippen
,
E. P.
,
2007
, “
Trapping, Corralling and Spectral Bonding of Optical Resonances Through Optically Induced Potentials
,”
Nat. Photonics
,
1
(
11
), pp.
658
665
.
23.
Butsch
,
A.
,
Kang
,
M. S.
,
Euser
,
T. G.
,
Koehler
,
J. R.
,
Rammler
,
S.
,
Keding
,
R.
, and
Russell
,
P. S. J.
,
2012
, “
Optomechanical Nonlinearity in Dual-Nanoweb Structure Suspended Inside Capillary Fiber
,”
Phys. Rev. Lett.
,
109
(
18
), p.
183904
.
24.
Van Thourhout
,
D.
, and
Roels
,
J.
,
2010
, “
Optomechanical Device Actuation Through the Optical Gradient Force
,”
Nat. Photonics
,
4
(
4
), pp.
211
217
.
25.
Padilla
,
W. J.
,
Taylor
,
A. J.
,
Highstrete
,
C.
,
Lee
,
M.
, and
Averitt
,
R. D.
,
2006
, “
Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies
,”
Phys. Rev. Lett.
,
96
(
10
), p.
107401
.
26.
Liberal
,
I.
, and
Engheta
,
N.
,
2017
, “
Near-Zero Refractive Index Photonics
,”
Nat. Photonics
,
11
(
3
), pp.
149
158
.
27.
Zhao
,
Q.
,
Kang
,
L.
,
Du
,
B.
,
Li
,
B.
,
Zhou
,
J.
,
Tang
,
H.
,
Liang
,
X.
, and
Zhang
,
B.
,
2007
, “
Electrically Tunable Negative Permeability Metamaterials Based on Nematic Liquid Crystals
,”
Appl. Phys. Lett.
,
90
(
1
), p.
011112
.
28.
Lapine
,
M.
,
Shadrivov
,
I. V.
,
Powell
,
D. A.
, and
Kivshar
,
Y. S.
,
2012
, “
Magnetoelastic Metamaterials
,”
Nat. Mater.
,
11
(
1
), pp.
30
33
.
29.
Lapine
,
M.
,
Shadrivov
,
I.
, and
Kivshar
,
Y.
,
2012
, “
Wide-Band Negative Permeability of Nonlinear Metamaterials
,”
Sci. Rep.
,
2
(
1
), pp.
1
4
.
30.
Wang
,
Y.
,
Shi
,
Y.
, and
Wang
,
J.
,
2020
, “
Mechanical Control of Topological Magnetic Structures in Multiferroic Composites
,”
Chin. J. Solid Mech.
,
41
(
2
), pp.
142
150
.
31.
Slobozhanyuk
,
A. P.
,
Lapine
,
M.
,
Powell
,
D. A.
,
Shadrivov
,
I. V.
,
Kivshar
,
Y. S.
,
McPhedran
,
R. C.
, and
Belov
,
P. A.
,
2013
, “
Flexible Helices for Nonlinear Metamaterials
,”
Adv. Mater.
,
25
(
25
), pp.
3409
3412
.
32.
Lee
,
S.
,
Kim
,
S.
,
Kim
,
T. T.
,
Kim
,
Y.
,
Choi
,
M.
,
Lee
,
S. H.
,
Kim
,
J. Y.
, and
Min
,
B.
,
2012
, “
Reversibly Stretchable and Tunable Terahertz Metamaterials With Wrinkled Layouts
,”
Adv. Mater.
,
24
(
26
), pp.
3491
3497
.
33.
Fan
,
X.
,
Li
,
Y.
,
Chen
,
S.
,
Xing
,
Y.
, and
Pan
,
T.
,
2020
, “
Mechanical Terahertz Modulation by Skin-Like Ultrathin Stretchable Metasurface
,”
Small
,
16
(
37
), p.
2002484
.
34.
Fan
,
X.
,
Pan
,
Z.
,
Chen
,
S.
,
Li
,
Y.
,
Zhao
,
Z.
,
Xin
,
Y.
, and
Pan
,
T.
,
2021
, “
Design and Fabrication of a Reconfigurable and Flexible Frequency Selective Surface With a Buckling Dipole Via Mechanical Stretching
,”
Soft Sci.
,
1
(
3
), p.
13
.
35.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak
, Jr.,
R. J.
, and
Lagoudas
,
D. C.
,
2014
, “
Origami-Inspired Active Structures: A Synthesis and Review
,”
Smart Mater. Struct.
,
23
(
9
), p.
094001
.
36.
Fang
,
H.
,
Wu
,
H.
,
Liu
,
Z.
,
Zhang
,
Q.
, and
Xu
,
J.
,
2022
, “
Advances in the Dynamics of Origami Structures and Origami Metamaterials
,”
Chin. J. Theor. Appl. Mech.
,
54
(
1
), pp.
1
38
.
37.
Zhai
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2018
, “
Origami-Inspired, on-Demand Deployable and Collapsible Mechanical Metamaterials With Tunable Stiffness
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
9
), pp.
2032
2037
.
38.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
39.
Nauroze
,
S. A.
,
Novelino
,
L. S.
,
Tentzeris
,
M. M.
, and
Paulino
,
G. H.
,
2018
, “
Continuous-Range Tunable Multilayer Frequency-Selective Surfaces Using Origami and Inkjet Printing
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
52
), pp.
13210
13215
.
40.
Wang
,
Z.
,
Jing
,
L.
,
Yao
,
K.
,
Yang
,
Y.
,
Zheng
,
B.
,
Soukoulis
,
C. M.
,
Chen
,
H.
, and
Liu
,
Y.
,
2017
, “
Origami-Based Reconfigurable Metamaterials for Tunable Chirality
,”
Adv. Mater.
,
29
(
27
), p.
1700412
.
41.
Jing
,
L.
,
Wang
,
Z.
,
Zheng
,
B.
,
Wang
,
H.
,
Yang
,
Y.
,
Shen
,
L.
,
Yin
,
W.
,
Li
,
E.
, and
Chen
,
H.
,
2018
, “
Kirigami Metamaterials for Reconfigurable Toroidal Circular Dichroism
,”
NPG Asia Mater.
,
10
(
9
), pp.
888
898
.
42.
Li
,
M.
,
Hu
,
Y.
,
Chen
,
Q.
,
Chen
,
H.
, and
Wang
,
Z.
,
2021
, “
Bianisotropic Origami Metasurfaces for Mechanically Controlled Asymmetric Radiation
,”
New J. Phys.
,
23
(
8
), p.
085002
.
43.
Yan
,
Z.
,
Zhang
,
F.
,
Wang
,
J.
,
Liu
,
F.
,
Guo
,
X.
,
Nan
,
K.
,
Lin
,
Q.
,
Gao
,
M.
,
Xiao
,
D.
, and
Shi
,
Y.
,
2016
, “
Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials
,”
Adv. Funct. Mater.
,
26
(
16
), pp.
2629
2639
.
44.
Shi
,
Y.
,
Zhang
,
F.
,
Nan
,
K.
,
Wang
,
X.
,
Wang
,
J.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Luan
,
H.
,
Hwang
,
K.-C.
, and
Huang
,
Y.
,
2017
, “
Plasticity-Induced Origami for Assembly of Three Dimensional Metallic Structures Guided by Compressive Buckling
,”
Extreme Mech. Lett.
,
11
, pp.
105
110
.
45.
Zhang
,
Y.
,
Xue
,
Y.
,
Yuan
,
W.
,
Ma
,
W.
,
Li
,
J.
, and
Li
,
F.
,
2021
, “
Active Control of Thermo-Mechanical Buckling of Composite Laminated Plates Using Piezoelectric Actuators
,”
Acta Mech. Solida Sin.
,
34
(
3
), pp.
369
380
.
46.
Zhang
,
Y.
,
Yan
,
Z.
,
Nan
,
K.
,
Xiao
,
D.
,
Liu
,
Y.
,
Luan
,
H.
,
Fu
,
H.
,
Wang
,
X.
,
Yang
,
Q.
, and
Wang
,
J.
,
2015
, “
A Mechanically Driven Form of Kirigami As a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
38
), pp.
11757
11764
.
You do not currently have access to this content.