Abstract

Deformation and stress in battery electrode materials are strongly coupled with diffusion processes, and this coupling plays a crucial role in the chemical and structural stability of these materials. In this work, we performed a comparative study of the mechanical characteristics of two model materials (lithiated and sodiated germanium (Ge)) by nanoindentation. A particular focus of the study was on the indentation size effects and harnessing them to understand the chemo-mechanical interplay in these materials. While the quasi-static measurement results showed no significant size dependence, size effects inherent in the nanoindentation creep response were observed and utilized to investigate the deformation mechanism of each material. Supplemented by computational chemo-mechanical modeling, we found that lithiated Ge creeps through a stress-gradient-induced diffusion (SGID) mechanism but a model combining the SGID and conventional shear transformation deformation (STD) mechanisms was needed to capture the creep behavior of sodiated Ge. Broadly, this work reveals the importance of stress-diffusion coupling in governing the deformation of active electrode materials and provides a quantitative framework for characterizing and understanding such coupling.

References

1.
Chou
,
C.-Y.
,
Lee
,
M.
, and
Hwang
,
G. S.
,
2015
, “
A Comparative First-Principles Study on Sodiation of Silicon, Germanium, and Tin for Sodium-Ion Batteries
,”
J. Phys. Chem. C
,
119
(
27
), pp.
14843
14850
.
2.
Tian
,
H.
,
Xin
,
F.
,
Wang
,
X.
,
He
,
W.
, and
Han
,
W.
,
2015
, “
High Capacity Group-IV Elements (Si, Ge, Sn) Based Anodes for Lithium-Ion Batteries
,”
J. Mater.
,
1
(
3
), pp.
153
169
.
3.
Mortazavi
,
M.
,
Ye
,
Q.
,
Birbilis
,
N.
, and
Medhekar
,
N. V.
,
2015
, “
High Capacity Group-15 Alloy Anodes for Na-ion Batteries: Electrochemical and Mechanical Insights
,”
J. Power Sources
,
285
, pp.
29
36
.
4.
Lim
,
Y. R.
,
Shojaei
,
F.
,
Park
,
K.
,
Jung
,
C. S.
,
Park
,
J.
,
Cho
,
W. I.
, and
Kang
,
H. S.
,
2018
, “
Arsenic for High-Capacity Lithium- and Sodium-ion Batteries
,”
Nanoscale
,
10
(
15
), pp.
7047
7057
.
5.
Gómez-Cámer
,
J. L.
,
Villevieille
,
C.
, and
Novák
,
P.
,
2013
, “
Antimony Based Negative Electrodes for Next Generation Li-ion Batteries
,”
J. Mater. Chem. A
,
1
(
41
), pp.
13011
13016
.
6.
Bervas
,
M.
,
Mansour
,
A. N.
,
Yoon
,
W. S.
,
Al-Sharab
,
J. F.
,
Badway
,
F.
,
Cosandey
,
F.
,
Klein
,
L. C.
, and
Amatucci
,
G. G.
,
2006
, “
Investigation of the Lithiation and Delithiation Conversion Mechanisms of Bismuth Fluoride Nanocomposites
,”
J. Electrochem. Soc.
,
153
(
4
), p.
A799
.
7.
Park
,
C.-M.
, and
Sohn
,
H.-J.
,
2007
, “
Black Phosphorus and Its Composite for Lithium Rechargeable Batteries
,”
Adv. Mater.
,
19
(
18
), pp.
2465
2468
.
8.
Gonzalez
,
J.
,
Sun
,
K.
,
Huang
,
M.
,
Lambros
,
J.
,
Dillon
,
S.
, and
Chasiotis
,
I.
,
2014
, “
Three Dimensional Studies of Particle Failure in Silicon Based Composite Electrodes for Lithium Ion Batteries
,”
J. Power Sources
,
269
, pp.
334
343
.
9.
Qian
,
J.
,
Wu
,
X.
,
Cao
,
Y.
,
Ai
,
X.
, and
Yang
,
H.
,
2013
, “
High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries
,”
Angew. Chem. Int. Ed.
,
52
(
17
), pp.
4633
4636
.
10.
Liu
,
X. H.
,
Huang
,
S.
,
Picraux
,
S. T.
,
Li
,
J.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2011
, “
Reversible Nanopore Formation in Ge Nanowires During Lithiation–Delithiation Cycling: An In Situ Transmission Electron Microscopy Study
,”
Nano Lett.
,
11
(
9
), pp.
3991
3997
.
11.
Liu
,
X. H.
,
Liu
,
Y.
,
Kushima
,
A.
,
Zhang
,
S.
,
Zhu
,
T.
,
Li
,
J.
, and
Huang
,
J. Y.
,
2012
, “
In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures
,”
Adv. Energy Mater.
,
2
(
7
), pp.
722
741
.
12.
Liu
,
X. H.
,
Wang
,
J. W.
,
Huang
,
S.
,
Fan
,
F.
,
Huang
,
X.
,
Liu
,
Y.
,
Krylyuk
,
S.
, et al
,
2012
, “
In Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon
,”
Nat. Nanotechnol.
,
7
(
11
), pp.
749
756
.
13.
McDowell
,
M. T.
,
Lee
,
S. W.
,
Harris
,
J. T.
,
Korgel
,
B. A.
,
Wang
,
C.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2013
, “
In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
,”
Nano Lett.
,
13
(
2
), pp.
758
764
.
14.
Wang
,
J. W.
,
He
,
Y.
,
Fan
,
F.
,
Liu
,
X. H.
,
Xia
,
S.
,
Liu
,
Y.
,
Harris
,
C. T.
, et al
,
2013
, “
Two-Phase Electrochemical Lithiation in Amorphous Silicon
,”
Nano Lett.
,
13
(
2
), pp.
709
715
.
15.
Wang
,
J.
,
Fan
,
F.
,
Liu
,
Y.
,
Jungjohann
,
K. L.
,
Lee
,
S. W.
,
Mao
,
S. X.
,
Liu
,
X.
, and
Zhu
,
T.
,
2014
, “
Structural Evolution and Pulverization of Tin Nanoparticles During Lithiation-Delithiation Cycling
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
F3019
F3024
.
16.
Nadimpalli
,
S. P. V.
,
Sethuraman
,
V. A.
,
Bucci
,
G.
,
Srinivasan
,
V.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2013
, “
On Plastic Deformation and Fracture in Si Films During Electrochemical Lithiation/Delithiation Cycling
,”
J. Electrochem. Soc.
,
160
(
10
), pp.
A1885
A1893
.
17.
Gonzalez
,
J.
,
Sun
,
K.
,
Huang
,
M.
,
Dillon
,
S.
,
Chasiotis
,
I.
, and
Lambros
,
J.
,
2015
, “
X-ray Microtomography Characterization of Sn Particle Evolution During Lithiation/Delithiation in Lithium Ion Batteries
,”
J. Power Sources
,
285
, pp.
205
209
.
18.
Wang
,
X.
,
Pan
,
Z.
,
Fan
,
F.
,
Wang
,
J.
,
Liu
,
Y.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Xia
,
S.
,
2015
, “
Nanoscale Deformation Analysis with High-Resolution Transmission Electron Microscopy and Digital Image Correlation
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121001
.
19.
Sethuraman
,
V. A.
,
Srinivasan
,
V.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
A1253
A1261
.
20.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
195
(
15
), pp.
5062
5066
.
21.
Chon
,
M. J.
,
Sethuraman
,
V. A.
,
McCormick
,
A.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2011
, “
Real-Time Measurement of Stress and Damage Evolution During Initial Lithiation of Crystalline Silicon
,”
Phys. Rev. Lett.
,
107
(
4
), p.
045503
.
22.
Sethuraman
,
V. A.
,
Nguyen
,
A.
,
Chon
,
M. J.
,
Nadimpalli
,
S. P. V.
,
Wang
,
H.
,
Abraham
,
D. P.
,
Bower
,
A. F.
,
Shenoy
,
V. B.
, and
Guduru
,
P. R.
,
2013
, “
Stress Evolution in Composite Silicon Electrodes During Lithiation/Delithiation
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A739
A746
.
23.
Bucci
,
G.
,
Nadimpalli
,
S. P. V.
,
Sethuraman
,
V. A.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2014
, “
Measurement and Modeling of the Mechanical and Electrochemical Response of Amorphous Si Thin Film Electrodes During Cyclic Lithiation
,”
J. Mech. Phys. Solids
,
62
, pp.
276
294
.
24.
Nadimpalli
,
S. P. V.
,
Tripuraneni
,
R.
, and
Sethuraman
,
V. A.
,
2015
, “
Real-Time Stress Measurements in Germanium Thin Film Electrodes During Electrochemical Lithiation/Delithiation Cycling
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2840
A2846
.
25.
Pharr
,
M.
,
Choi
,
Y. S.
,
Lee
,
D.
,
Oh
,
K. H.
, and
Vlassak
,
J. J.
,
2016
, “
Measurements of Stress and Fracture in Germanium Electrodes of Lithium-ion Batteries During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
304
, pp.
164
169
.
26.
Chen
,
C.-H.
,
Chason
,
E.
, and
Guduru
,
P. R.
,
2017
, “
Measurements of the Phase and Stress Evolution During Initial Lithiation of Sn Electrodes
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A574
A579
.
27.
Rakshit
,
S.
,
Pakhare
,
A. S.
,
Ruiz
,
O.
,
Khoshi
,
M. R.
,
Detsi
,
E.
,
He
,
H.
,
Sethuraman
,
V. A.
, and
Nadimpalli
,
S. P.
,
2021
, “
Measurement of Volume Changes and Associated Stresses in Ge Electrodes Due to Na/Na+ Redox Reactions
,”
J. Electrochem. Soc.
,
168
(
1
) p.
010504
.
28.
Tripuraneni
,
R.
,
Rakshit
,
S.
, and
Nadimpalli
,
S. P.
,
2018
, “
In Situ Measurement of the Effect of Stress on the Chemical Diffusion Coefficient of Li in High-Energy-Density Electrodes
,”
J. Electrochem. Soc.
,
165
(
10
), pp.
A2194
A2202
.
29.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Van Winkle
,
N.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurement of Biaxial Modulus of Si Anode for Li-ion Batteries
,”
Electrochem. Commun.
,
12
(
11
), pp.
1614
1617
.
30.
Wang
,
X.
,
Yang
,
A.
, and
Xia
,
S.
,
2016
, “
Fracture Toughness Characterization of Lithiated Germanium as an Anode Material for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
A90
A95
.
31.
Pharr
,
M.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2013
, “
Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries
,”
Nano Lett.
,
13
(
11
), pp.
5570
5577
.
32.
Chen
,
J.
,
Thapa
,
A. K.
, and
Berfield
,
T. A.
,
2014
, “
In-situ Characterization of Strain in Lithium Battery Working Electrodes
,”
J. Power Sources
,
271
, pp.
406
413
.
33.
Jones
,
E. M. C.
,
Silberstein
,
M. N.
,
White
,
S. R.
, and
Sottos
,
N. R.
,
2014
, “
In Situ Measurements of Strains in Composite Battery Electrodes During Electrochemical Cycling
,”
Exp. Mech.
,
54
(
6
), pp.
971
985
.
34.
Qi
,
Y.
, and
Harris
,
S. J.
,
2010
, “
In Situ Observation of Strains During Lithiation of a Graphite Electrode
,”
J. Electrochem. Soc.
,
157
(
6
), pp.
A741
A747
.
35.
Wang
,
J.
,
Eng
,
C.
,
Chen-Wiegart
,
Y.-C. K.
, and
Wang
,
J.
,
2015
, “
Probing Three-Dimensional Sodiation–Desodiation Equilibrium in Sodium-ion Batteries by In Situ Hard X-ray Nanotomography
,”
Nat. Commun.
,
6
(
1
), p.
7496
.
36.
Ebner
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2013
, “
Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries
,”
Science
,
342
(
6159
), pp.
716
720
.
37.
Boles
,
S. T.
,
Thompson
,
C. V.
,
Kraft
,
O.
, and
Mönig
,
R.
,
2013
, “
In Situ Tensile and Creep Testing of Lithiated Silicon Nanowires
,”
Appl. Phys. Lett.
,
103
(
26
), p.
263906
.
38.
Kushima
,
A.
,
Huang
,
J. Y.
, and
Li
,
J.
,
2012
, “
Quantitative Fracture Strength and Plasticity Measurements of Lithiated Silicon Nanowires by In Situ TEM Tensile Experiments
,”
ACS Nano
,
6
(
11
), pp.
9425
9432
.
39.
Ratchford
,
J. B.
,
Schuster
,
B. E.
,
Crawford
,
B. A.
,
Lundgren
,
C. A.
,
Allen
,
J. L.
, and
Wolfenstine
,
J.
,
2011
, “
Young's Modulus of Polycrystalline Li22Si5
,”
J. Power Sources
,
196
(
18
), pp.
7747
7749
.
40.
Ratchford
,
J. B.
,
Crawford
,
B. A.
,
Wolfenstine
,
J.
,
Allen
,
J. L.
, and
Lundgren
,
C. A.
,
2012
, “
Young's Modulus of Polycrystalline Li12Si7 Using Nanoindentation Testing
,”
J. Power Sources
,
211
, pp.
1
3
.
41.
Hertzberg
,
B.
,
Benson
,
J.
, and
Yushin
,
G.
,
2011
, “
Ex-situ Depth-Sensing Indentation Measurements of Electrochemically Produced Si–Li Alloy Films
,”
Electrochem. Commun.
,
13
(
8
), pp.
818
821
.
42.
Zinn
,
A.-H.
,
Borhani-Haghighi
,
S.
,
Ventosa
,
E.
,
Pfetzing-Micklich
,
J.
,
Wieczorek
,
N.
,
Schuhmann
,
W.
, and
Ludwig
,
A.
,
2014
, “
Mechanical Properties of SiLix Thin Films at Different Stages of Electrochemical Li Insertion
,”
Phys. Status Solidi A
,
211
(
11
), pp.
2650
2656
.
43.
Berla
,
L. A.
,
Lee
,
S. W.
,
Cui
,
Y.
, and
Nix
,
W. D.
,
2015
, “
Mechanical Behavior of Electrochemically Lithiated Silicon
,”
J. Power Sources
,
273
, pp.
41
51
.
44.
Papakyriakou
,
M.
,
Wang
,
X.
, and
Xia
,
S.
,
2018
, “
Characterization of Stress-Diffusion Coupling in Lithiated Germanium by Nanoindentation
,”
Exp. Mech.
,
58
(
4
), pp.
613
625
.
45.
Wang
,
X.
,
Fan
,
F.
,
Wang
,
J.
,
Wang
,
H.
,
Tao
,
S.
,
Yang
,
A.
,
Liu
,
Y.
,
Beng Chew
,
H.
,
Mao
,
S. X.
, and
Zhu
,
T.
,
2015
, “
High Damage Tolerance of Electrochemically Lithiated Silicon
,”
Nat. Commun.
,
6
, pp.
1
7
.
46.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
47.
Li
,
H.
, and
Ngan
,
A. H. W.
,
2004
, “
Size Effects of Nanoindentation Creep
,”
J. Mater. Res.
,
19
(
2
), pp.
513
522
.
48.
Voyiadjis
,
G. Z.
, and
Peters
,
R.
,
2010
, “
Size Effects in Nanoindentation: an Experimental and Analytical Study
,”
Acta Mech.
,
211
(
1–2
), pp.
131
153
.
49.
Peng
,
Z.
,
Gong
,
J.
, and
Miao
,
H.
,
2004
, “
On the Description of Indentation Size Effect in Hardness Testing for Ceramics: Analysis of the Nanoindentation Data
,”
J. Eur. Ceram. Soc.
,
24
(
8
), pp.
2193
2201
.
50.
Han
,
C.-S.
,
Sanei
,
S. H.
, and
Alisafaei
,
F.
,
2016
, “
On the Origin of Indentation Size Effects and Depth Dependent Mechanical Properties of Elastic Polymers
,”
J. Polym. Eng.
,
36
(
1
), pp.
103
111
.
51.
Graetz
,
J.
,
Ahn
,
C. C.
,
Yazami
,
R.
, and
Fultz
,
B.
,
2004
, “
Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities
,”
J. Electrochem. Soc.
,
151
(
5
), pp.
A698
A702
.
52.
Papakyriakou
,
M.
,
Lu
,
M.
,
Liu
,
Y.
,
Liu
,
Z.
,
Chen
,
H.
,
McDowell
,
M. T.
, and
Xia
,
S.
,
2021
, “
Mechanical Behavior of Inorganic Lithium-Conducting Solid Electrolytes
,”
J. Power Sources
,
516
, p.
230672
.
53.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
54.
Miao
,
J.
,
Wang
,
B.
, and
Thompson
,
C. V.
,
2020
, “
Kinetic Study of Lithiation-Induced Phase Transitions in Amorphous Germanium Thin Films
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090557
.
55.
Pan
,
D.
,
Inoue
,
A.
,
Sakurai
,
T.
, and
Chen
,
M. W.
,
2008
, “
Experimental Characterization of Shear Transformation Zones for Plastic Flow of Bulk Metallic Glasses
,”
Proc. Natl. Acad. Sci.
,
105
(
39
), pp.
14769
14772
.
56.
Boebinger
,
M. G.
,
Yeh
,
D.
,
Xu
,
M.
,
Miles
,
B. C.
,
Wang
,
B.
,
Papakyriakou
,
M.
,
Lewis
,
J. A.
, et al
,
2018
, “
Avoiding Fracture in a Conversion Battery Material Through Reaction With Larger Ions
,”
Joule
,
2
(
9
), pp.
1783
1799
.
57.
Cao
,
P.
,
Short
,
M. P.
, and
Yip
,
S.
,
2017
, “
Understanding the Mechanisms of Amorphous Creep Through Molecular Simulation
,”
Proc. Natl. Acad. Sci.
,
114
(
52
), pp.
13631
13636
.
58.
Ding
,
N.
,
Xu
,
J.
,
Yao
,
Y.
,
Wegner
,
G.
,
Fang
,
X.
,
Chen
,
C.
, and
Lieberwirth
,
I.
,
2009
, “
Determination of the Diffusion Coefficient of Lithium Ions in Nano-Si
,”
Solid State Ionics
,
180
(
2–3
), pp.
222
225
.
59.
Tritsaris
,
G. A.
,
Zhao
,
K.
,
Okeke
,
O. U.
, and
Kaxiras
,
E.
,
2012
, “
Diffusion of Lithium in Bulk Amorphous Silicon: A Theoretical Study
,”
J. Phys. Chem. C
,
116
(
42
), pp.
22212
22216
.
60.
Dong
,
R.
,
Wu
,
F.
,
Bai
,
Y.
,
Li
,
Q.
,
Yu
,
X.
,
Li
,
Y.
,
Ni
,
Q.
, and
Wu
,
C.
,
2022
, “
Tailoring Defects in Hard Carbon Anode Towards Enhanced Na Storage Performance
,”
Energy Mater. Adv.
,
2022
, pp.
1
11
.
You do not currently have access to this content.