Abstract

A robust and general theory is of great importance to understanding the mechanism of wrinkling, describing its behaviors and guiding the design of thin sheets. Two widely accepted theories, tension-field theory (Wagner, 1929) and thin-film theory (Cerda and Mahadevan, 2003), have been successfully used in predicting the location and pattern of wrinkling and defining critical conditions for its onset, but they have failed to describe the post-buckling behaviors (i.e., bifurcations, increasing wavenumber, and corresponding changes in morphology). In this paper, we propose a new theory of wrinkling that considers the effects of both mechanical and geometrical characteristics of thin sheets on the spatial variation in wrinkles and is valid for the general problems of post-buckling analyses. By circumventing the Föppl–von Kármán equations, the theory offers a compelling complement to thin-film theory and provides analytical details of wrinkles, especially for closed form of post-buckling behaviors. An energy barrier is introduced to assess the configurational changes of wrinkles as they evolve. Three typical examples are selected for validating the robustness of the theory and exploring its implications. More broadly, the present work provides important guidelines for eliminating wrinkles in thin sheet structures.

References

1.
Cerda
,
E.
,
Ravi-Chandar
,
K.
, and
Mahadevan
,
L.
,
2002
, “
Thin Films: Wrinkling of an Elastic Sheet Under Tension
,”
Nature
,
419
(
6907
), pp.
579
580
.
2.
Sharon
,
E.
,
Marder
,
M.
, and
Swinney
,
H.
,
2004
, “
Leaves, Flowers and Garbage Bags: Making Waves
,”
Am. Sci.
,
92
(
3
), pp.
254
261
.
3.
Wang
,
C. G.
,
Du
,
X. W.
,
Tan
,
H. F.
, and
He
,
X. D.
,
2009
, “
A New Computational Method for Wrinkling Analysis of Gossamer Space Structures
,”
Int. J. Solids Struct.
,
46
(
6
), pp.
1516
1526
.
4.
Zhu
,
J.
,
Zhang
,
X.
, and
Wierzbicki
,
T.
,
2018
, “
Stretch-Induced Wrinkling of Highly Orthotropic Thin Films
,”
Int. J. Solids Struct.
,
139–140
, pp.
238
249
.
5.
Vandeparre
,
H.
,
Piñeirua
,
M.
,
Brau
,
F.
,
Roman
,
B.
,
Bico
,
J.
,
Gay
,
C.
,
Bao
,
W.
,
Lau
,
C. N.
,
Reis
,
P. M.
, and
Damman
,
P.
,
2011
, “
Wrinkling Hierarchy in Constrained Thin Sheets From Suspended Graphene to Curtains
,”
Phys. Rev. Lett.
,
106
(
22
), p.
224301
.
6.
Dong
,
L.
,
Liu
,
Y.
,
Wen
,
K.
,
Chen
,
D.
,
Rao
,
D.
,
Liu
,
J.
,
Yuan
,
B.
, et al
,
2021
, “
High-Polarity Fluoroalkyl Ether Electrolyte Enables Solvation-Free Li+ Transfer for High-Rate Lithium Metal Batteries
,”
Adv. Sci.
,
9
(
5
), p.
2104699
.
7.
Peng
,
F.
,
Hu
,
Y. R.
, and
Ng
,
A.
,
2006
, “
Testing of Membrane Space Structure Shape Control Using Genetic Algorithm
,”
J. Spacecr. Rockets
,
43
(
4
), pp.
788
793
.
8.
Vulpetti
,
G.
,
Johnson
,
L.
, and
Matloff
,
G. L.
,
2008
,
Solar Sails: A Novel Approach to Interplanetary Travel
,
Springer Science+Business Media
,
New York
.
9.
Gerasimidis
,
S.
,
Virot
,
E.
,
Hutchinson
,
J. W.
, and
Rubinstein
,
S. M.
,
2018
, “
On Establishing Buckling Knockdowns for Imperfection-Sensitive Shell Structures
,”
ASME J. Appl. Mech.
,
85
(
9
), p.
091010
.
10.
Wang
,
J.
,
Li
,
B.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2016
, “
Wrinkling Micropatterns Regulated by a Hard Skin Layer with a Periodic Stiffness Distribution on a Soft Material
,”
Appl. Phys. Lett.
,
108
(
2
), p.
021903
.
11.
Plucinsky
,
P.
, and
Bhattacharya
,
K.
,
2017
, “
Microstructure-Enabled Control of Wrinkling in Nematic Elastomer Sheets
,”
J. Mech. Phys. Solids
,
102
, pp.
125
150
.
12.
Ma
,
L.
,
He
,
L.
, and
Ni
,
Y.
,
2020
, “
Tunable Hierarchical Wrinkling: From Models to Applications
,”
J. Appl. Phys.
,
127
(
11
), p.
111101
.
13.
Mao
,
G.
,
Wu
,
L.
,
Liang
,
X.
, and
Qu
,
S.
,
2017
, “
Morphology of Voltage-Triggered Ordered Wrinkles of a Dielectric Elastomer Sheet
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111005
.
14.
Li
,
B.
,
Cao
,
Y. P.
,
Feng
,
X. Q.
, and
Gao
,
H.
,
2012
, “
Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review
,”
Soft Matter
,
8
(
21
), pp.
5728
5745
.
15.
Im
,
S. H.
, and
Huang
,
R.
,
2008
, “
Wrinkle Patterns of Anisotropic Crystal Films on Viscoelastic Substrates
,”
J. Mech. Phys. Solids
,
56
(
12
), pp.
3315
3330
.
16.
Liu
,
Y.
,
Guo
,
K.
,
Wang
,
C.
, and
Gao
,
H.
,
2019
, “
Wrinkling and Ratcheting of a Thin Film on Cyclically Deforming Plastic Substrate: Mechanical Instability of the Solid-Electrolyte Interphase in Li–Ion Batteries
,”
J. Mech. Phys. Solids
,
123
, pp.
103
118
.
17.
Wagner
,
H.
,
1929
, “
Flat Sheet Metal Girders with Very Thin Metal web
,”
Z. Flugtech. Motorluftschiffahrt
,
20
, pp.
200
314
.
18.
Roddeman
,
D. G.
,
Drukker
,
J.
,
Oomens
,
C. W. J.
, and
Janssen
,
J. D.
,
1987
, “
The Wrinkling of Thin Membranes: Part I—Theory
,”
ASME J. Appl. Mech.
,
54
(
4
), pp.
884
887
.
19.
Taylor
,
M.
,
Bertoldi
,
K.
, and
Steigmann
,
D. J.
,
2014
, “
Spatial Resolution of Wrinkle Patterns in Thin Elastic Sheets at Finite Strain
,”
J. Mech. Phys. Solids
,
62
, pp.
163
180
.
20.
Wang
,
T.
,
Fu
,
C.
,
Xu
,
F.
,
Huo
,
M.
, and
Potier-Ferry
,
M.
,
2019
, “
On the Wrinkling and Restabilization of Highly Stretched Sheets
,”
Int. J. Eng. Sci.
,
136
, pp.
1
16
.
21.
Jacques
,
N.
, and
Potier-Ferry
,
M.
,
2005
, “
On Mode Localisation in Tensile Plate Buckling
,”
Comptes Rendus Mécanique
,
333
(
11
), pp.
804
809
.
22.
Steigmann
,
D. J.
,
1990
, “
Tension-Field Theory
,”
Proc. R. Soc. A
,
429
(
1876
), pp.
141
173
.
23.
Pipkin
,
A. C.
,
1986
, “
The Relaxed Energy Density for Isotropic Elastic Membranes
,”
IMA J. Appl. Math.
,
36
(
1
), pp.
85
99
.
24.
Nayyar
,
V.
,
Ravi-Chandar
,
K.
, and
Huang
,
R.
,
2011
, “
Stretch-Induced Stress Patterns and Wrinkles in Hyperelastic Thin Sheets
,”
Int. J. Solids Struct.
,
48
(
25
), pp.
3471
3483
.
25.
Haseganu
,
E. M.
, and
Steigmann
,
D. J.
,
1994
, “
Analysis of Partly Wrinkled Membranes by the Method of Dynamic Relaxation
,”
Comput. Mech.
,
14
(
6
), pp.
596
614
.
26.
Sui
,
J.
,
Chen
,
J.
,
Zhang
,
X.
,
Nie
,
G.
, and
Zhang
,
T.
,
2019
, “
Symplectic Analysis of Wrinkles in Elastic Layers with Graded Stiffnesses
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011008
.
27.
Audoly
,
B.
, and
Hutchinson
,
J. W.
,
2020
, “
Localization in Spherical Shell Buckling
,”
J. Mech. Phys. Solids
,
136
, p.
103720
.
28.
Steigmann
,
D. J.
,
2007
, “
Thin-Plate Theory for Large Elastic Deformations
,”
Int. J. Non-Linear Mech.
,
42
(
2
), pp.
233
240
.
29.
Healey
,
T. J.
,
Li
,
Q.
, and
Cheng
,
R. B.
,
2013
, “
Wrinkling Behavior of Highly Stretched Rectangular Elastic Films via Parametric Global Bifurcation
,”
J. Nonlinear Sci.
,
23
(
5
), pp.
777
805
.
30.
Nayyar
,
V.
,
Ravi-Chandar
,
K.
, and
Huang
,
R.
,
2014
, “
Stretch-Induced Wrinkling of Polyethylene Thin Sheets: Experiments and Modeling
,”
Int. J. Solids Struct.
,
51
(
9
), pp.
1847
1858
.
31.
Shui
,
L.
,
Liu
,
Y.
,
Li
,
B.
,
Zou
,
C.
,
Tang
,
C.
,
Zhu
,
L.
, and
Chen
,
X.
,
2019
, “
Mechanisms of Electromechanical Wrinkling for Highly Stretched Substrate-Free Dielectric Elastic Membrane
,”
J. Mech. Phys. Solids
,
122
, pp.
520
537
.
32.
Wong
,
Y. W.
, and
Pellegrino
,
S.
,
2006
, “
Wrinkled Membranes Part II: Analytical Models
,”
J. Mech. Mater. Struct.
,
1
(
1
), pp.
27
61
.
33.
Friedl
,
N.
,
Rammerstorfer
,
F. G.
, and
Fischer
,
F. D.
,
2000
, “
Buckling of Stretched Strips
,”
Comput. Struct.
,
78
(
1–3
), pp.
185
190
.
34.
Patil
,
A.
,
Nordmark
,
A.
, and
Eriksson
,
A.
,
2016
, “
Instabilities of Wrinkled Membranes with Pressure Loadings
,”
J. Mech. Phys. Solids
,
94
, pp.
298
315
.
35.
Wong
,
Y. W.
, and
Pellegrino
,
S.
,
2006
, “
Wrinkled Membranes Part III: Numerical Simulations
,”
J. Mech. Mater. Struct.
,
1
(
1
), pp.
63
95
.
36.
Kim
,
T. Y.
,
Puntel
,
E.
, and
Fried
,
E.
,
2012
, “
Numerical Study of the Wrinkling of a Stretched Thin Sheet
,”
Int. J. Solids Struct.
,
49
(
5
), pp.
771
782
.
37.
Damil
,
N.
,
Potier-Ferry
,
M.
, and
Hu
,
H.
,
2014
, “
Membrane Wrinkling Revisited From a Multi-Scale Point of View
,”
Adv. Model. Simul. Eng. Sci.
,
1
(
1
), pp.
1
35
.
38.
Fu
,
C.
,
Wang
,
T.
,
Xu
,
F.
,
Huo
,
Y.
, and
Potier-Ferry
,
M.
,
2019
, “
A Modeling and Resolution Framework for Wrinkling in Hyperelastic Sheets at Finite Membrane Strain
,”
J. Mech. Phys. Solids
,
124
, pp.
446
470
.
39.
Mao
,
G.
,
Hong
,
W.
,
Kaltenbrunner
,
M.
, and
Qu
,
S.
,
2021
, “
A Numerical Approach Based on Finite Element Method for the Wrinkling Analysis of Dielectric Elastomer Membranes
,”
ASME J. Appl. Mech.
,
88
(
10
), p.
101007
.
40.
Hutchinson
,
J. W.
,
2020
, “
EML Webinar Overview: New Developments in Shell Stability
,”
Extreme Mech. Lett.
,
39
, p.
100805
.
41.
Cerda
,
E.
, and
Mahadevan
,
L.
,
2003
, “
Geometry and Physics of Wrinkling
,”
Phys. Rev. Lett.
,
90
(
7
), p.
074302
.
42.
Wang
,
C. G.
,
Tan
,
H. F.
,
Lan
,
L.
, and
Li
,
L.
,
2015
, “
Mode Jumping Analysis of Thin Film Secondary Wrinkling
,”
Int. J. Mech. Sci.
,
104
, pp.
138
146
.
43.
Li
,
M.
,
Luo
,
Y.
,
Wu
,
H. P.
,
Zhu
,
K.
,
Niu
,
Y.
,
Zhao
,
T.
,
Xing
,
J.
, and
Kang
,
Z.
,
2017
, “
A Prenecking Strategy Makes Stretched Membranes with Clamped Ends Wrinkle-Free
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
061006
.
44.
Li
,
M.
,
Zhu
,
K.
,
Qi
,
G.
,
Kang
,
Z.
, and
Luo
,
Y.
,
2021
, “
Wrinkled and Wrinkle-Free Membranes
,”
Int. J. Eng. Sci.
,
167
, p.
103526
.
45.
Luo
,
Y.
,
Xing
,
J.
,
Niu
,
Y.
,
Li
,
M.
, and
Kang
,
Z.
,
2017
, “
Wrinkle-Free Design of Thin Membrane Structures Using Stress-Based Topology Optimization
,”
J. Mech. Phys. Solids
,
102
, pp.
277
293
.
You do not currently have access to this content.