Abstract

Surface energy plays a central role in several phenomena pertaining to nearly all aspects of materials science. This includes phenomena such as self-assembly, catalysis, fracture, void growth, and microstructural evolution among others. In particular, due to the large surface-to-volume ratio, the impact of surface energy on the physical response of nanostructures is nothing short of dramatic. How does the roughness of a surface renormalize the surface energy and associated quantities such as surface stress and surface elasticity? In this work, we attempt to address this question by using a multi-scale asymptotic homogenization approach. In particular, the novelty of our work is that we consider highly rough surfaces, reminiscent of experimental observations, as opposed to gentle roughness that is often treated by using a perturbation approach. We find that softening of a rough surface is significantly underestimated by conventional approaches. In addition, our approach naturally permits the consideration of bending resistance of a surface, consistent with the Steigmann–Ogden theory, in sharp contrast to the surfaces in the Gurtin–Murdoch surface elasticity theory that do not offer flexural resistance.

References

1.
Haiss
,
W.
,
2001
, “
Surface Stress of Clean and Adsorbate-Covered Solids
,”
Rep. Prog. Phys.
,
64
(
5
), pp.
591
648
.
2.
Müller
,
P.
, and
Saúl
,
A.
,
2004
, “
Elastic Effects on Surface Physics
,”
Surf. Sci. Rep.
,
54
(
5–8
), pp.
157
258
.
3.
Pala
,
R. G. S.
, and
Liu
,
F.
,
2004
, “
Determining the Adsorptive and Catalytic Properties of Strained Metal Surfaces Using Adsorption-induced Stress
,”
J. Chem. Phys.
,
120
(
16
), pp.
7720
7724
.
4.
Wang
,
G.-F.
, and
Feng
,
X.-Q.
,
2007
, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Micro Beams
,”
Appl. Phys. Lett.
,
90
(
23
), p.
231904
.
5.
Park
,
H. S.
,
2008
, “
Strain Sensing Through the Resonant Properties of Deformed Metal Nanowires
,”
J. Appl. Phys.
,
104
(
1
), p.
013516
.
6.
Park
,
H. S.
,
2009
, “
Quantifying the Size-dependent Effect of the Residual Surface Stress on the Resonant Frequencies of Silicon Nanowires If Finite Deformation Kinematics Are Considered
,”
J. Mech. Phys. Solids
,
56
(
11
), pp.
3144
3166
.
7.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
.
8.
Duan
,
H.
,
Wang
,
J.
,
Huang
,
Z.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1574
1596
.
9.
Huang
,
Z. P.
, and
Sun
,
L.
,
2007
, “
Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis
,”
Acta Mech.
,
190
(
1–4
), pp.
151
163
.
10.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
,
2008
, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/interface Effects
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2298
2327
.
11.
Suo
,
Z.
, and
Lu
,
W.
,
2000
, “
Forces That Drive Nanoscale Self-Assembly on Solid Surfaces
,”
J. Nanopart. Res.
,
2
(
4
), pp.
333
344
.
12.
Diao
,
J.
,
Gall
,
K.
, and
Dunn
,
M. L.
,
2003
, “
Surface-Stress-Induced Phase Transformation in Metal Nanowires
,”
Nat. Mater.
,
2
(
10
), pp.
656
660
.
13.
Fischer
,
F.
,
Waitz
,
T.
,
Vollath
,
D.
, and
Simha
,
N.
,
2008
, “
On the Role of Surface Energy and Surface Stress in Phase-Transforming Nanoparticles
,”
Prog. Mater. Sci.
,
53
(
3
), pp.
481
527
.
14.
Gorbushin
,
N.
,
Eremeyev
,
V. A.
, and
Mishuris
,
G.
,
2020
, “
On Stress Singularity Near the Tip of a Crack With Surface Stresses
,”
Int. J. Eng. Sci.
,
146
, p.
103183
.
15.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
.
16.
Diao
,
J.
,
Gall
,
K.
,
Dunn
,
M. L.
, and
Zimmerman
,
J. A.
,
2006
, “
Atomistic Simulations of the Yielding of Gold Nanowires
,”
Acta Mater.
,
54
(
3
), pp.
643
653
.
17.
Villain
,
P.
,
Beauchamp
,
P.
,
Badawi
,
K.
,
Goudeau
,
P.
, and
Renault
,
P.-O.
,
2004
, “
Atomistic Calculation of Size Effects on Elastic Coefficients in Nanometre-Sized Tungsten Layers and Wires
,”
Scr. Mater.
,
50
(
9
), pp.
1247
1251
.
18.
Dingreville
,
R.
,
Qu
,
J.
, and
Cherkaoui
,
M.
,
2005
, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1827
1854
.
19.
Jing
,
G. Y.
,
Duan
,
H. L.
,
Sun
,
X. M.
,
Zhang
,
Z. S.
,
Xu
,
J.
,
Li
,
Y. D.
,
Wang
,
J. X.
, and
Yu
,
D. P.
,
2006
, “
Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy
,”
Phys. Rev. B
,
73
(
23
), p.
235409
.
20.
Lachut
,
M. J.
, and
Sader
,
J. E.
,
2007
, “
Effect of Surface Stress on the Stiffness of Cantilever Plates
,”
Phys. Rev. Lett.
,
99
(
20
), p.
206102
.
21.
Liu
,
C.
, and
Rajapakse
,
R. K. N. D.
,
2010
, “
Continuum Models Incorporating Surface Energy for Static and Dynamic Response of Nanoscale Beams
,”
IEEE Trans. Nanotechnol.
,
9
(
4
), pp.
422
431
.
22.
Bar On
,
B.
,
Altus
,
E.
, and
Tadmor
,
E.
,
2010
, “
Surface Effects in Non-uniform Nanobeams: Continuum Vs. Atomistic Modeling
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1243
1252
.
23.
Wang
,
Z.-Q.
,
Zhao
,
Y.-P.
, and
Huang
,
Z.-P.
,
2010
, “
The Effects of Surface Tension on the Elastic Properties of Nano Structures
,”
Int. J. Eng. Sci.
,
48
(
2
), pp.
140
150
.
24.
De Gennes
,
P.-G.
,
Brochard-Wyart
,
F.
, and
Quéré
,
D.
,
2013
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
,
Springer Science & Business Media
,
New York
.
25.
Style
,
R. W.
,
Hyland
,
C.
,
Boltyanskiy
,
R.
,
Wettlaufer
,
J. S.
, and
Dufresne
,
E. R.
,
2013
, “
Surface Tension and Contact With Soft Elastic Solids
,”
Nat. Commun.
,
4
(
1
), pp.
1
6
.
26.
Style
,
R. W.
,
Jagota
,
A.
,
Hui
,
C.-Y.
, and
Dufresne
,
E. R.
,
2017
, “
Elastocapillarity: Surface Tension and the Mechanics of Soft Solids
,”
Annu. Rev. Condens. Matter Phys.
,
8
(
1
), pp.
99
118
.
27.
Krichen
,
S.
,
Liu
,
L.
, and
Sharma
,
P.
,
2019
, “
Liquid Inclusions in Soft Materials: Capillary Effect, Mechanical Stiffening and Enhanced Electromechanical Response
,”
J. Mech. Phys. Solids
,
127
(
1
), pp.
332
357
.
28.
Biria
,
A.
,
Maleki
,
M.
, and
Fried
,
E.
,
2013
, “Continuum Theory for the Edge of an Open Lipid Bilayer,”
Advances in Applied Mechanics
, Vol.
46
,
S.P.A.
Bordas
, ed.,
Elsevier
,
San Diego, CA
, pp.
1
68
.
29.
Liu
,
L.
,
Yu
,
M.
,
Lin
,
H.
, and
Foty
,
R.
,
2017
, “
Deformation and Relaxation of An Incompressible Viscoelastic Body With Surface Viscoelasticity
,”
J. Mech. Phys. Solids
,
98
(
3
), pp.
309
329
.
30.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
.
31.
Gurtin
,
M.
,
Weissmüller
,
J.
, and
Larche
,
F.
,
1998
, “
A General Theory of Curved Deformable Interfaces in Solids At Equilibrium
,”
Philos. Mag. A
,
78
(
5
), pp.
1093
1109
.
32.
Mozaffari
,
K.
,
Yang
,
S.
, and
Sharma
,
P.
,
2019
,
Surface Energy and Nanoscale Mechanics
(
Handbook of Materials Modeling
),
Springer Nature
,
Switzerland
, pp.
1
26
.
33.
Li
,
S.
, and
Wang
,
G.
,
2008
,
Introduction to Micromechanics and Nanomechanics
,
World Scientific Publishing Company
,
Hackensack, NJ
.
34.
Cammarata
,
R. C.
,
2009
, “
Generalized Thermodynamics of Surfaces With Applications to Small Solid Systems
,”
Solid State Phys.
,
61
, pp.
1
75
.
35.
Duan
,
H.
,
Wang
,
J.
, and
Karihaloo
,
B. L.
,
2009
, “Theory of Elasticity at the Nanoscale,”
Advances in Applied Mechanics
, Vol.
42
,
H.
Aref
, and
E.
van der Giessen
, eds.,
Elsevier
,
San Diego, CA
, pp.
1
68
.
36.
Javili
,
A.
,
McBride
,
A.
, and
Steinmann
,
P.
,
2013
, “
Thermomechanics of Solids With Lower-dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review
,”
Appl. Mech. Rev.
,
65
(
1
), p.
010802
.
37.
Hashin
,
Z.
,
2002
, “
Thin Interphase/imperfect Interface in Elasticity With Application to Coated Fiber Composites
,”
J. Mech. Phys. Solids
,
50
(
12
), pp.
2509
2537
.
38.
Brisard
,
S.
,
Dormieux
,
L.
, and
Kondo
,
D.
,
2010
, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces
,”
Comput. Mater. Sci.
,
48
(
3
), pp.
589
596
.
39.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1997
, “
Plane Deformations of Elastic Solids With Intrinsic Boundary Elasticity
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
453
(
1959
), pp.
853
877
.
40.
Steigmann
,
D. J.
, and
Ogden
,
R. W.
,
1999
, “
Elastic Surface-Substrate Interactions
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
455
(
1982
), pp.
437
474
.
41.
Fried
,
E.
, and
Todres
,
R. E.
,
2005
, “
Mind the Gap: The Shape of the Free Surface of a Rubber-Like Material in Proximity to a Rigid Contactor
,”
J. Elast.
,
80
(
1–3
), pp.
97
151
.
42.
Schiavone
,
P.
, and
Ru
,
C. Q.
,
2009
, “
Solvability of Boundary Value Problems in a Theory of Plane-Strain Elasticity With Boundary Reinforcement
,”
Int. J. Eng. Sci.
,
47
(
11–12
), pp.
1331
1338
.
43.
Chhapadia
,
P.
,
Mohammadi
,
P.
, and
Sharma
,
P.
,
2011
, “
Curvature-dependent Surface Energy and Implications for Nanostructures
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2103
2115
.
44.
Weissmuller
,
J.
, and
Duan
,
H.
,
2008
, “
Cantilever Bending With Rough Surfaces
,”
Phys. Rev. Lett.
,
101
(
14
), p.
146102
.
45.
Wang
,
Y.
,
Weissmuller
,
J.
, and
Duan
,
H.
,
2010
, “
Mechanics of Corrugated Surfaces
,”
J. Mech. Phys. Solids
,
58
(
10
, pp.
1552
1566
.
46.
Mohammadi
,
P.
,
Liu
,
L. P.
,
Sharma
,
P.
, and
Kukta
,
R. V.
,
2013
, “
Surface Energy, Elasticity and the Homogenization of Rough Surfaces
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
325
340
.
47.
Nevard
,
J.
, and
Keller
,
J. B.
,
1997
, “
Homogenization of Rough Boundaries and Interfaces
,”
SIAM J. Appl. Math.
,
57
(
6
), pp.
1660
1686
.
48.
Vinh
,
P. C.
, and
Tung
,
D. X.
,
2010
, “
Homogenized Equations of the Linear Elasticity in Two-Dimensional Domains with Very Rough Interfaces
,”
Mech. Res. Commun.
,
37
(
3
), pp.
285
288
.
49.
Vinh
,
P. C.
,
Tung
,
D. X.
, and
Kieu
,
N. T.
,
2018
, “
Homogenization of Very Rough Two-Dimensional Interfaces Separating Two Dissimilar Poroelastic Solids With Time-Harmonic Motions
,”
Math. Mech. Solids
,
24
(
5
), pp.
1349
1367
.
50.
Le Quang
,
H.
,
He
,
Q. C.
, and
Le
,
H. T.
,
2013
, “
Multiscale Homogenization of Elastic Layered Composites With Unidirectionally Periodic Rough Interfaces
,”
Multiscale Model. Simul.
,
11
(
4
), pp.
1127
1148
.
51.
Le
,
H. T.
,
Le Quang
,
H.
, and
He
,
Q.-C.
,
2014
, “
The Effective Elastic Moduli of Columnar Composites Made of Cylindrically Anisotropic Phases With Rough Interfaces
,”
Int. J. Solids Struct.
,
51
(
14
), pp.
2633
2647
.
52.
Elsner
,
B.
,
Muller
,
S.
,
Bargmann
,
S.
, and
Weissmuller
,
J.
,
2017
, “
Surface Excess Elasticity of Gold: Ab Initio Coefficients and Impact on the Effective Elastic Response of Nanowires
,”
Acta Mater.
,
124
(
6
), pp.
468
477
.
53.
Kohler
,
W.
,
Papanicolaou
,
G.
, and
Varadhan
,
S.
,
1981
, “Boundary and Interface Problems in Regions with Very Rough Boundaries,”
Multiple Scattering and Waves in Random Media
,
P. L.
Chow
,
W. E.
Kohler
, and
G. C.
Papanicolaou
, eds.,
North-Holland Publishing Company
,
Amsterdam
, p.
165
.
54.
Love
,
A.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
(
Dover Books on Engineering Series
),
Dover Publications
.
55.
Shenoy
,
V. B.
,
2005
, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces
,”
Phys. Rev. B
,
71
(
9
), p.
094104
.
You do not currently have access to this content.