Abstract

Great progress has been made in modulating flexural waves by elastic metasurfaces. Most of the proposed elastic metasurfaces suffer from chromatic aberration, limited in a narrow bandwidth around the designed frequency. In this paper, overcoming the chromatic aberration, an ultra-broadband achromatic meta-slab (UAM) with subunits of gradient thickness is proposed to realize the refraction angle unchanged with the incident frequency. Based on the phase compensation principle, wavelength-dependent phase shifts for the UAM that realize achromaticity are obtained. In order to verify the effectiveness of the theoretical design, the transmitted wavefields are solved according to the phased array theory, and the results correspond with those obtained by the finite element (FE) simulations and experiments, which show that the refraction angle is unchanged for incident frequencies from 2 kHz to 8 kHz. Besides, the UAM is extended into a periodic meta-slab, and multifrequency achromaticity is realized. Our designed meta-slabs overcome the chromatic aberration by simple configurations, which have significance in the applications of vibration control, vibrational energy harvesting, and health monitoring.

References

1.
Hecht
,
E.
,
1997
,
Optics
,
Addison Wesley
,
Upper Saddle River, NJ
.
2.
Pedrotti
,
F. L.
, and
Pedrotti
,
L. S.
,
1987
,
Introduction to Optics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Miks
,
A.
, and
Novak
,
J.
,
2013
, “
Method for Primary Design of Superachromats
,”
Appl. Opt.
,
52
(
28
), pp.
6868
6876
.
4.
Greisukh
,
G. I.
,
Ezhov
,
E. G.
, and
Stepanov
,
S. A.
,
2006
, “
Diffractive–Refractive Hybrid Corrector for Achro- and Apochromatic Corrections of Optical Systems
,”
Appl. Opt.
,
45
(
24
), pp.
6137
6141
.
5.
Yuxin WangTicknor
,
C.
,
Yun
,
W.
, and
Jacobsen
,
C.
,
2003
, “
Achromatic Fresnel Optics for Wideband Extreme-Ultraviolet and X-Ray Imaging
,”
Nature
,
424
(
6944
), pp.
50
53
.
6.
Yu
,
N.
,
Genevet
,
P.
,
Kats
,
M. A.
,
Aieta
,
F.
,
Tetienne
,
J.-P.
,
Capasso
,
F.
, and
Gaburro
,
Z.
,
2011
, “
Light Propagation With Phase Discontinuities: Generalized Laws of Reflection and Refraction
,”
Science
,
334
(
6054
), pp.
333
337
.
7.
Yuan
,
G. H.
,
Rogers
,
E. T.
, and
Zheludev
,
N. I.
,
2017
, “
Achromatic Super-Oscillatory Lenses With Sub-Wavelength Focusing
,”
Light Sci. Appl.
,
6
(
9
), pp.
e17036
e17036
.
8.
Wang
,
S.
,
Wu
,
P. C.
,
Su
,
V. C.
,
Lai
,
Y. C.
,
Hung Chu
,
C.
,
Chen
,
J. W.
,
Lu
,
S. H.
, et al
,
2017
, “
Broadband Achromatic Optical Metasurface Devices
,”
Nat. Commun.
,
8
(
1
), p.
187
.
9.
Wang
,
S.
,
Wu
,
P. C.
,
Su
,
V. C.
,
Lai
,
Y. C.
,
Chen
,
M. K.
,
Kuo
,
H. Y.
,
Chen
,
B. H.
, et al
,
2018
, “
A Broadband Achromatic Metalens in the Visible
,”
Nat. Nanotechnol.
,
13
(
3
), pp.
227
232
.
10.
Khorasaninejad
,
M.
,
Aieta
,
F.
,
Kanhaiya
,
P.
,
Kats
,
M. A.
,
Genevet
,
P.
,
Rousso
,
D.
, and
Capasso
,
F.
,
2015
, “
Achromatic Metasurface Lens at Telecommunication Wavelengths
,”
Nano. Lett.
,
15
(
8
), pp.
5358
5362
.
11.
Avayu
,
O.
,
Almeida
,
E.
,
Prior
,
Y.
, and
Ellenbogen
,
T.
,
2017
, “
Composite Functional Metasurfaces for Multispectral Achromatic Optics
,”
Nat. Commun.
,
8
(
1
), p.
14992
.
12.
Aieta
,
F.
,
Kats
,
M. A.
,
Genevet
,
P.
, and
Capasso
,
F.
,
2015
, “
Multiwavelength Achromatic Metasurfaces by Dispersive Phase Compensation
,”
Science
,
347
(
6228
), pp.
1342
1345
.
13.
Huang
,
L.
,
Chen
,
X.
,
Muhlenbernd
,
H.
,
Li
,
G.
,
Bai
,
B.
,
Tan
,
Q.
,
Jin
,
G.
,
Zentgraf
,
T.
, and
Zhang
,
S.
,
2012
, “
Dispersionless Phase Discontinuities for Controlling Light Propagation
,”
Nano. Lett.
,
12
(
11
), pp.
5750
5755
.
14.
Tian
,
Y.
,
Wei
,
Q.
,
Cheng
,
Y.
,
Xu
,
Z.
, and
Liu
,
X.
,
2017
, “
Broadband Manipulation of Acoustic Wavefronts by Pentamode Metasurface
,”
Appl. Phys. Lett.
,
107
(
6
), p.
221906
.
15.
Zhu
,
Y. F.
,
Zou
,
X. Y.
,
Li
,
R. Q.
,
Jiang
,
X.
,
Tu
,
J.
,
Liang
,
B.
, and
Cheng
,
J. C.
,
2015
, “
Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface
,”
Sci. Rep.
,
5
(
1
), p.
10966
.
16.
Zhu
,
Y. F.
,
Fan
,
X. D.
,
Liang
,
B.
,
Yang
,
J.
,
Yang
,
J.
,
Yin
,
L. L.
, and
Cheng
,
J. C.
,
2016
, “
Multi-Frequency Acoustic Metasurface for Extraordinary Reflection and Sound Focusing
,”
AIP Adv.
,
6
(
12
), p.
121702
.
17.
Weng
,
J. K.
,
Zhu
,
Y. F.
,
Liang
,
B.
,
Yang
,
J.
, and
Cheng
,
J. C.
,
2020
, “
Wavelength-Dependent Multi-Functional Wavefront Manipulation for Reflected Acoustic Waves
,”
Appl. Phys. Express
,
13
(
9
), p.
094003
.
18.
Zhang
,
J.
,
Zhang
,
X. B.
,
Xu
,
F. L.
,
Ding
,
X. Y.
,
Deng
,
M. X.
,
Hu
,
N.
, and
Zhang
,
C. Z.
,
2020
, “
Vibration Control of Flexural Waves in Thin Plates by 3D-Printed Metasurfaces
,”
J. Sound Vib.
,
481
(
19
), p.
115460
.
19.
Zhang
,
J.
,
Su
,
X.
,
Liu
,
Y.
,
Zhao
,
Y.
,
Jing
,
Y.
, and
Hu
,
N.
,
2019
, “
Metasurface Constituted by Thin Composite Beams to Steer Flexural Waves in Thin Plates
,”
Int. J. Solids Struct.
,
162
, pp.
14
20
.
20.
Cao
,
L.
,
Yang
,
Z.
,
Xu
,
Y.
, and
Assouar
,
B.
,
2018
, “
Deflecting Flexural Wave With High Transmission by Using Pillared Elastic Metasurface
,”
Smart Mater. Struct.
,
27
(
7
), p.
075051
.
21.
Xu
,
Y.
,
Cao
,
L.
, and
Yang
,
Z.
,
2019
, “
Deflecting Incident Flexural Waves by Nonresonant Single-Phase Meta-Slab With Subunits of Graded Thicknesses
,”
J. Sound Vib.
,
454
, pp.
51
62
.
22.
Cao
,
L.
,
Yang
,
Z.
,
Xu
,
Y.
,
Fan
,
S. W.
,
Zhu
,
Y.
,
Chen
,
Z.
,
Vincent
,
B.
, and
Assouar
,
B.
,
2020
, “
Disordered Elastic Metasurfaces
,”
Phys. Rev. Appl.
,
13
(
1
), p.
014054
.
23.
Zhu
,
H.
, and
Semperlotti
,
F.
,
2016
, “
Anomalous Refraction of Acoustic Guided Waves in Solids With Geometrically Tapered Metasurfaces
,”
Phys. Rev. Lett.
,
117
(
3
), p.
034302
.
24.
Su
,
G.
,
Zhang
,
Y.
,
Liu
,
Y.
, and
Wang
,
T.
,
2021
, “
Steering Flexural Waves by Amplitude-Shift Elastic Metasurfaces
,”
ASME J. Appl. Phys.
,
88
(
5
), p.
051011
.
25.
Tian
,
Z.
, and
Yu
,
L.
,
2019
, “
Elastic Phased Diffraction Gratings for Manipulation of Ultrasonic Guided Waves in Solids
,”
Phys. Rev. Appl.
,
11
(
2
), p.
024052
.
26.
Wang
,
W.
,
Iglesias
,
J.
,
Jin
,
Y.
,
Djafari-Rouhani
,
B.
, and
Khelif
,
A.
,
2021
, “
Experimental Realization of a Pillared Metasurface for Flexural Wave Focusing
,”
APL Mater.
,
9
(
5
), p.
051125
.
27.
Jin
,
Y.
,
Wang
,
W.
,
Khelif
,
A.
, and
Djafari-Rouhani
,
B.
,
2021
, “
Elastic Metasurfaces for Deep and Robust Subwavelength Focusing and Imaging
,”
Phys. Rev. Appl.
,
15
(
2
), p.
024005
.
28.
Li
,
B.
,
Hu
,
Y.
,
Chen
,
J.
,
Su
,
G.
,
Liu
,
Y.
,
Zhao
,
M.
, and
Li
,
Z.
,
2020
, “
Efficient Asymmetric Transmission of Elastic Waves in Thin Plates With Lossless Metasurfaces
,”
Phys. Rev. Appl.
,
14
(
5
), p.
054029
.
29.
Cao
,
L.
,
Xu
,
Y.
,
Assouar
,
B.
, and
Yang
,
Z.
,
2018
, “
Asymmetric Flexural Wave Transmission Based on Dual-Layer Elastic Gradient Metasurfaces
,”
Appl. Phys. Lett.
,
113
(
18
), p.
183506
.
30.
Zhu
,
H.
,
Walsh
,
T. F.
, and
Semperlotti
,
F.
,
2018
, “
Total-Internal-Reflection Elastic Metasurfaces: Design and Application to Structural Vibration Isolation
,”
Appl. Phys. Lett.
,
113
(
22
), p.
221903
.
31.
Xu
,
Y.
,
Cao
,
L.
,
Peng
,
P.
,
Zhou
,
X.
,
Assouar
,
B.
, and
Yang
,
Z.
,
2019
, “
Beam Splitting of Flexural Waves With a Coding Meta-Slab
,”
Appl. Phys. Express
,
12
(
9
), p.
097002
.
32.
Liu
,
Y.
,
Liang
,
Z.
,
Liu
,
F.
,
Diba
,
O.
,
Lamb
,
A.
, and
Li
,
J.
,
2017
, “
Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces
,”
Phys. Rev. Lett.
,
119
(
3
), p.
034301
.
33.
Jin
,
Y.
,
Pennec
,
Y.
,
Bonello
,
B.
,
Honarvar
,
H.
,
Dobrzynski
,
L.
,
Djafari-Rouhani
,
B.
, and
Hussein
,
M. I.
,
2021
, “
Physics of Surface Vibrational Resonances: Pillared Phononic Crystals, Metamaterials, and Metasurfaces
,”
Rep. Prog. Phys.
,
84
(
8
), p.
086502
.
34.
Park
,
J.
,
Lee
,
D.
, and
Rho
,
J.
,
2020
, “
Recent Advances in Non-Traditional Elastic Wave Manipulation by Macroscopic Artificial Structures
,”
Appl. Sci.
,
10
(
2
), p.
547
.
35.
Li
,
S.
,
Xu
,
J.
, and
Tang
,
J.
,
2018
, “
Tunable Modulation of Refracted Lamb Wave Front Facilitated by Adaptive Elastic Metasurfaces
,”
Appl. Phys. Lett.
,
112
(
2
), p.
021903
.
36.
Ning
,
L.
,
Wang
,
Y.-Z.
, and
Wang
,
Y.-S.
,
2020
, “
Active Control of a Black Hole or Concentrator for Flexural Waves in an Elastic Metamaterial Plate
,”
Mech. Mater.
,
142
, p.
103300
.
37.
Fang
,
X.-Q.
,
Liu
,
J.-X.
,
Nie
,
G.-Q.
, and
Hu
,
C.
,
2010
, “
Propagation of Flexural Waves and Localized Vibrations in the Strip Plate With a Layer Using Hamilton System
,”
Eur. J. Mech. A/Solids
,
29
(
2
), pp.
152
157
.
38.
Zhu
,
H. F.
,
Walsh
,
T. F.
, and
Semperlotti
,
F.
,
2019
, “
Experimental Study of Vibration Isolation in Thin-Walled Structural Assemblies With Embedded Total-Internal-Reflection Metasurfaces
,”
J. Sound Vib.
,
456
, pp.
162
172
.
39.
Zareei
,
A.
,
Darabi
,
A.
,
Leamy
,
M. J.
, and
Alam
,
M.-R.
,
2018
, “
Continuous Profile Flexural GRIN Lens: Focusing and Harvesting Flexural Waves
,”
Appl. Phys. Lett.
,
112
(
2
), p.
023901
.
40.
Cao
,
L.
,
Yang
,
Z.
,
Xu
,
Y.
,
Fan
,
S.-W.
,
Zhu
,
Y.
,
Chen
,
Z.
,
Li
,
Y.
, and
Assouar
,
B.
,
2020
, “
Flexural Wave Absorption by Lossy Gradient Elastic Metasurface
,”
J. Mech. Phys. Solids
,
143
, p.
104052
.
41.
Shen
,
Y.
,
Xu
,
Y.
,
Liu
,
F.
,
Wang
,
F.
, and
Yang
,
Z.
,
2021
, “
3D-Printed Meta-Slab for Focusing Flexural Waves in Broadband
,”
Extreme Mech. Lett.
,
48
, p.
101410
.
You do not currently have access to this content.