Abstract

An experimental technique is reported, which can image the deformation fields associated with dynamic failure events at high spatial and temporal resolutions simultaneously. The technique is demonstrated at a spatial resolution of ∼1 µm and a temporal resolution of 250 ns, while maintaining a relatively large field of view (≈1.11 mm × 0.63 mm). As a demonstration, the technique is used to image the deformation field near a notch tip during initiation of a shear instability in polycarbonate. An ordered array of 10 µm diameter speckles with 20 µm pitch, and deposited on the specimen surface near the notch tip helps track evolution of the deformation field. Experimental results show that the width of the shear band (SB) in polycarbonate is approximately 75 µm near the notch tip within resolution limits of the experiments. The measurements also reveal formation of two incipient localization bands near the crack tip, one of which subsequently becomes the dominant band while the other is suppressed. Computational simulation of the experiment was conducted using a thermomechanically coupled rate-dependent constitutive model of polycarbonate to gain further insight into the experimental observations enabled by the combination of high spatial and temporal resolutions. The simulation results show reasonable agreement with the experimentally observed kinematic field and features near the notch tip, while also pointing to the need for further refinement of constitutive models that are calibrated at high strain rates (∼105/s) and also account for damage evolution.

References

1.
Estrada
,
J. B.
,
Barajas
,
C.
,
Henann
,
D. L.
,
Johnsen
,
E.
, and
Franck
,
C.
,
2018
, “
High Strain-Rate Soft Material Characterization via Inertial Cavitation
,”
J. Mech. Phys. Solids
,
112
, pp.
291
317
.
2.
Sick
,
V.
,
2013
, “
High Speed Imaging in Fundamental and Applied Combustion Research
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3509
3530
.
3.
Aldén
,
M.
,
Bood
,
J.
,
Li
,
Z.
, and
Richter
,
M.
,
2011
, “
Visualization and Understanding of Combustion Processes Using Spatially and Temporally Resolved Laser Diagnostic Techniques
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
69
97
.
4.
Böhm
,
B.
,
Heeger
,
C.
,
Gordon
,
R. L.
, and
Dreizler
,
A.
,
2011
, “
New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics
,”
Flow, Turbul. Combust.
,
86
(
3–4
), pp.
313
341
.
5.
Kohse-Höinghaus
,
K.
, and
Jeffries
,
J. B.
,
2002
,
Applied Combustion Diagnostics
,
Taylor and Francis
,
New York
.
6.
Rubino
,
V.
,
Rosakis
,
A.
, and
Lapusta
,
N.
,
2017
, “
Understanding Dynamic Friction Through Spontaneously Evolving Laboratory Earthquakes
,”
Nat. Commun.
,
8
(
1
), p.
15991
.
7.
Gori
,
M.
,
Rubino
,
V.
,
Rosakis
,
A. J.
, and
Lapusta
,
N.
,
2018
, “
Pressure Shock Fronts Formed by Ultra-Fast Shear Cracks in Viscoelastic Materials
,”
Nat. Commun.
,
9
(
1
), p.
4754
.
8.
Rubino
,
V.
,
Rosakis
,
A.
, and
Lapusta
,
N.
,
2019
, “
Full-Field Ultrahigh-Speed Quantification of Dynamic Shear Ruptures Using Digital Image Correlation
,”
Exp. Mech.
,
59
(
5
), pp.
551
582
.
9.
Dodd
,
B.
, and
Bai
,
Y.
,
2012
,
Adiabatic Shear Localization: Frontiers and Advances
,
Elsevier
,
New York
.
10.
Hartley
,
K.
,
Duffy
,
J.
, and
Hawley
,
R.
,
1987
, “
Measurement of the Temperature Profile During Shear Band Formation in Steels Deforming at High Strain Rates
,”
J. Mech. Phys. Solids
,
35
(
3
), pp.
283
301
.
11.
Marchand
,
A.
, and
Duffy
,
J.
,
1988
, “
An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel
,”
J. Mech. Phys. Solids
,
36
(
3
), pp.
251
283
.
12.
Zhou
,
M.
,
Rosakis
,
A.
, and
Ravichandran
,
G.
,
1996
, “
Dynamically Propagating Shear Bands in Impact-Loaded Prenotched Plates—I. Experimental Investigations of Temperature Signatures and Propagation Speed
,”
J. Mech. Phys. Solids
,
44
(
6
), pp.
981
1006
.
13.
Guduru
,
P.
,
Rosakis
,
A.
, and
Ravichandran
,
G.
,
2001
, “
Dynamic Shear Bands: An Investigation Using High Speed Optical and Infrared Diagnostics
,”
Mech. Mater.
,
33
(
7
), pp.
371
402
.
14.
Guduru
,
P.
,
Ravichandran
,
G.
, and
Rosakis
,
A.
,
2001
, “
Observations of Transient High Temperature Vortical Microstructures in Solids During Adiabatic Shear Banding
,”
Phys. Rev. E
,
64
(
3
), p.
036128
.
15.
Tippur
,
H.
, and
Rosakis
,
A.
,
1991
, “
Quasi-Static and Dynamic Crack Growth Along Bimaterial Interfaces: A Note on Crack-Tip Field Measurements Using Coherent Gradient Sensing
,”
Exp. Mech.
,
31
(
3
), pp.
243
251
.
16.
Tippur
,
H. V.
,
Krishnaswamy
,
S.
, and
Rosakis
,
A. J.
,
1991
, “
Optical Mapping of Crack Tip Deformations Using the Methods of Transmission and Reflection Coherent Gradient Sensing: A Study of Crack Tip K-Dominance
,”
Int. J. Fract.
,
52
(
2
), pp.
91
117
.
17.
Mason
,
J.
,
Lambros
,
J.
, and
Rosakis
,
A.
,
1992
, “
The Use of a Coherent Gradient Sensor in Dynamic Mixed-Mode Fracture Mechanics Experiments
,”
J. Mech. Phys. Solids
,
40
(
3
), pp.
641
661
.
18.
Kannan
,
V.
,
Hazeli
,
K.
, and
Ramesh
,
K.
,
2018
, “
The Mechanics of Dynamic Twinning in Single Crystal Magnesium
,”
J. Mech. Phys. Solids
,
120
, pp.
154
178
.
19.
Srivastava
,
V.
,
Parameswaran
,
V.
,
Shukla
,
A.
, and
Morgan
,
D.
,
2002
,
Effect of Loading Rate and Geometry Variation on the Dynamic Shear Strength of Adhesive Lap Joints, in Recent Advances in Experimental Mechanics
,
Springer
,
New York
, pp.
769
780
.
20.
Srivastava
,
V.
,
Shukla
,
A.
, and
Parameswaran
,
V.
,
2000
, “
Experimental Evaluation of the Dynamic Shear Strength of Adhesive-Bonded Lap Joints
,”
J. Test. Eval.
,
28
(
6
), pp.
438
442
.
21.
Council
,
N. R.
,
2011
,
Opportunities in Protection Materials Science and Technology for Future Army Applications
,
National Academies Press
,
Washington, DC
.
22.
Ravindran
,
S.
,
Tessema
,
A.
, and
Kidane
,
A.
,
2016
, “
Local Deformation and Failure Mechanisms of Polymer Bonded Energetic Materials Subjected to High Strain Rate Loading
,”
J. Dyn. Behav. Mater.
,
2
(
1
), pp.
146
156
.
23.
Ravindran
,
S.
,
Tessema
,
A.
, and
Kidane
,
A.
,
2017
, “
Multiscale Damage Evolution in Polymer Bonded Sugar Under Dynamic Loading
,”
Mech. Mater.
,
114
, pp.
97
106
.
24.
Tiwari
,
V.
,
Sutton
,
M.
, and
McNeill
,
S.
,
2007
, “
Assessment of High Speed Imaging Systems for 2D and 3D Deformation Measurements: Methodology Development and Validation
,”
Exp. Mech.
,
47
(
4
), pp.
561
579
.
25.
Pierron
,
F.
,
Cheriguene
,
R.
,
Forquin
,
P.
,
Moulart
,
R.
,
Rossi
,
M.
, and
Sutton
,
M. A.
,
2011
, “
Performances and Limitations of Three Ultra High-Speed Imaging Cameras for Full-Field Deformation Measurements in Applied Mechanics and Materials
,”
Trans. Tech. Publ.
,
70
, pp.
81
86
.
26.
Wright
,
T.
, and
Perzyna
,
P.
,
2003
, “
Physics and Mathematics of Adiabatic Shear Bands
,”
ASME Appl. Mech. Rev.
,
56
(
3
), pp.
B41
B43
.
27.
Kalthoff
,
J.
,
1990
, “
Transition in the Failure Behavior of Dynamically Shear Loaded Cracks
,”
ASME Appl. Mech. Rev.
,
43
(
5S
), pp.
S247
S250
.
28.
Ravi-Chandar
,
K. K.
,
Lu
,
J.
,
Yang
,
B.
, and
Zhu
,
Z.
,
2000
, “
Failure Mode Transitions in Polymers Under High Strain Rate Loading
,”
Int. J. Fract.
,
101
(
1–2
), pp.
33
72
.
29.
Ravi-Chandar
,
K.
,
1995
, “
On the Failure Mode Transitions in Polycarbonate Under Dynamic Mixed-Mode Loading
,”
Int. J. Solids Struct.
,
32
(
6–7
), pp.
925
938
.
30.
Guduru
,
P. R.
,
2001
,
An Investigation of Dynamic Failure Events in Steels Using Full Field High-Speed Infrared Thermography and High-Speed Photography
,
California Institute of Technology
,
Los Angeles, CA
.
31.
Kirugulige
,
M. S.
,
Tippur
,
H. V.
, and
Denney
,
T. S.
,
2007
, “
Measurement of Transient Deformations Using Digital Image Correlation Method and High-Speed Photography: Application to Dynamic Fracture
,”
Appl. Opt.
,
46
(
22
), pp.
5083
5096
.
32.
Small
,
A.
, and
Stahlheber
,
S.
,
2014
, “
Fluorophore Localization Algorithms for Super-Resolution Microscopy
,”
Nat. Methods
,
11
(
3
), pp.
267
279
.
33.
Abraham
,
A. V.
,
Ram
,
S.
,
Chao
,
J.
,
Ward
,
E. S.
, and
Ober
,
R. J.
,
2009
, “
Quantitative Study of Single Molecule Location Estimation Techniques
,”
Opt. Express
,
17
(
26
), pp.
23352
23373
.
34.
Cheezum
,
M. K.
,
Walker
,
W. F.
, and
Guilford
,
W. H.
,
2001
, “
Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles
,”
Biophys. J.
,
81
(
4
), pp.
2378
2388
.
35.
Parthasarathy
,
R.
,
2012
, “
Rapid, Accurate Particle Tracking by Calculation of Radial Symmetry Centers
,”
Nat. Methods
,
9
(
7
), pp.
724
726
.
36.
Liu
,
S.-L.
,
Li
,
J.
,
Zhang
,
Z. L.
,
Wang
,
Z. G.
,
Tian
,
Z. Q.
,
Wang
,
G. P.
, and
Pang
,
D. W.
,
2013
, “
Fast and High-Accuracy Localization for Three-Dimensional Single-Particle Tracking
,”
Sci. Rep.
,
3
(
1
), p.
2462
.
37.
Baek
,
S.
, and
Lee
,
S.
,
1996
, “
A New Two-Frame Particle Tracking Algorithm Using Match Probability
,”
Exp. Fluids
,
22
(
1
), pp.
23
32
.
38.
Pereira
,
F.
,
Stüer
,
H.
,
Graff
,
E. C.
, and
Gharib
,
M.
,
2006
, “
Two-Frame 3D Particle Tracking
,”
Meas. Sci. Technol.
,
17
(
7
), p.
1680
.
39.
Ohmi
,
K.
, and
Li
,
H.-Y.
,
2000
, “
Particle-Tracking Velocimetry With New Algorithms
,”
Meas. Sci. Technol.
,
11
(
6
), pp.
603
616
.
40.
Feng
,
X.
,
Hall
,
X.
,
Wu
,
M. S.
,
and Hui
,
M.
, and
Y
,
C.
,
2014
, “
An Adaptive Algorithm for Tracking 3D Bead Displacements: Application in Biological Experiments
,”
Meas. Sci. Technol.
,
25
(
5
), p.
055701
.
41.
Patel
,
M.
,
Leggett
,
S. E.
,
Landauer
,
A. K.
,
Wong
,
I. Y.
, and
Franck
,
C.
,
2018
, “
Rapid, Topology-Based Particle Tracking for High-Resolution Measurements of Large Complex 3D Motion Fields
,”
Sci. Rep.
,
8
(
1
), p.
5581
.
42.
Immerkaer
,
J.
,
1996
, “
Fast Noise Variance Estimation
,”
Comput. Vis. Image Underst.
,
64
(
2
), pp.
300
302
.
43.
Buades
,
A.
,
Coll
,
B.
, and
Morel
,
J.-M.
,
2005
, “
A Non-Local Algorithm for Image Denoising
,”
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
,
San Diego, CA
,
June 20
, IEEE, pp.
60
65
.
44.
Srivastava
,
V.
,
Chester
,
S. A.
, and
Anand
,
L.
,
2010
, “
Thermally Actuated Shape-Memory Polymers: Experiments, Theory, and Numerical Simulations
,”
J. Mech. Phys. Solids
,
58
(
8
), pp.
1100
1124
.
45.
Srivastava
,
V. S. A.
,
Ames
,
N. M.
, and
Anand
,
L.
,
2010
, “
A Thermo-Mechanically-Coupled Large-Deformation Theory for Amorphous Polymers in a Temperature Range Which Spans Their Glass Transition
,”
Int. J. Plast.
,
26
(
8
), pp.
1138
1182
.
46.
Anand
,
L.
,
Ames
,
N. M.
,
Srivastava
,
V.
, and
Chester
,
S. A.
,
2009
, “
A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers. Part I: Formulation
,”
Int. J. Plast.
,
25
(
8
), pp.
1474
1494
.
47.
Ames
,
N. M.
,
Srivastava
,
V.
,
Chester
,
S. A.
, and
Anand
,
L.
,
2009
, “
A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers. Part II: Applications
,”
Int. J. Plast.
,
25
(
8
), pp.
1495
1539
.
48.
Gent
,
A. N.
,
1996
, “
A new Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
49.
Bai
,
Y.
,
Kaiser
,
N. J.
,
Coulombe
,
K. L.
, and
Srivastava
,
V.
,
2021
, “
A Continuum Model and Simulations for Large Deformation of Anisotropic Fiber-Matrix Composites for Cardiac Tissue Engineering
,”
J. Mech. Behav. Biomed. Mater.
,
121
, p.
104627
.
50.
Carroll
,
M. M.
,
2019
, “
Molecular Chain Networks and Strain Energy Functions in Rubber Elasticity
,”
Philos. Trans. R. Soc., A
,
377
(
2144
), p.
20180067
.
51.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strains.
J. Appl. Mech.
,
36
(
1
), pp.
1
6
.
52.
Kothari
,
M.
,
Niu
,
S.
, and
Srivastava
,
V.
,
2019
, “
A Thermo-Mechanically Coupled Finite Strain Model for Phase-Transitioning Austenitic Steels in Ambient to Cryogenic Temperature Range
,”
J. Mech. Phys. Solids
,
133
, p.
103729
.
53.
Garg
,
M.
,
Mulliken
,
A.
, and
Boyce
,
M.
,
2008
, “
Temperature Rise in Polymeric Materials During High Rate Deformation
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
011009
.
54.
Bjerke
,
T.
,
Li
,
Z.
, and
Lambros
,
J.
,
2002
, “
Role of Plasticity in Heat Generation During High Rate Deformation and Fracture of Polycarbonate
,”
Int. J. Plast.
,
18
(
4
), pp.
549
567
.
55.
Zehnder
,
A. T.
,
Guduru
,
P. R.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
2000
, “
Million Frames per Second Infrared Imaging System
,”
Rev. Sci. Instrum.
,
71
(
10
), pp.
3762
3768
.
56.
Wright
,
T. W.
,
2002
,
The Physics and Mathematics of Adiabatic Shear Bands
,
Cambridge University Press
.
57.
Aranda-Ruiz
,
J.
,
Ravi-Chandar
,
K.
, and
Loya
,
J.
,
2020
, “
On the Double Transition in the Failure Mode of Polycarbonate
,”
Mech. Mater.
,
140
, p.
103242
.
You do not currently have access to this content.