Abstract

Insertion of flexible microprobes into the brain requires withstanding the compressive penetration force by the microprobes. To aid the insertion of the microprobes, most of the existing approaches use pushing mechanisms to provide temporary stiffness increase for the microprobes to prevent buckling during insertion into the brain. However, increasing the microprobe stiffness may result in acute neural tissue damage during insertion. Moreover, any late or premature removal of the temporary stiffness after insertion may lead to further tissue damage due to brain micromotion or inaccuracy in the microprobe positioning. In this study, a novel pneumatic-based insertion mechanism is proposed which simultaneously pulls and pushes a flexible microprobe toward the brain. As part of the brain penetration force in the proposed mechanism is supplied by the tensile force, the applied compressive force, which the microprobe must withstand during insertion, is lower compared with the existing approaches. Therefore, the microprobes with a critical buckling force less than the brain penetration force can be inserted into the brain without buckling. Since there is no need for temporary stiffness increment, neural tissue damage during the microprobe insertion will be much lower compared with the existing insertion approaches. The pneumatic-based insertion mechanism is modeled analytically to investigate the effects of the microprobe configuration and the applied air pressure on the applied tensile and compressive forces to the microprobe. Next, finite element modeling is conducted, and its analysis results not only validate the analytical results but also confirm the efficiency of the mechanism.

References

1.
Lazarou
,
I.
,
Nikolopoulos
,
S.
,
Petrantonakis
,
P. C.
,
Kompatsiaris
,
I.
, and
Tsolaki
,
M.
,
2018
, “
EEG-Based Brain–Computer Interfaces for Communication and Rehabilitation of People With Motor Impairment: A Novel Approach of the 21st Century
,”
Front. Hum. Neurosci.
,
12
(
14
).
2.
Kai
,
J. M.
,
Dora
,
H.
, and
Nathan
,
P. S.
,
2020
, “
The Current State of Electrocorticography-Based Brain–Computer Interfaces
,”
Neurosurg. Focus
,
49
(
1
), p.
E2
.
3.
Sridharan
,
A.
,
Muthuswamy
,
J.
, and
Rajan
,
S. D.
,
2013
, “
Long-Term Changes in the Material Properties of Brain Tissue at the Implant-Tissue Interface
,”
J. Neural. Eng.
,
10
(
6
), p.
066001
.
4.
Potter
,
K. A.
,
Buck
,
A. C.
,
Self
,
W. K.
, and
Capadona
,
J. R.
,
2012
, “
Stab Injury and Device Implantation Within the Brain Results in Inversely Multiphasic Neuroinflammatory and Neurodegenerative Responses
,”
J. Neural. Eng.
,
9
(
4
), p.
046020
.
5.
Duncan
,
J.
,
Sridharan
,
A.
,
Kumar
,
S. S.
,
Iradukunda
,
D.
, and
Muthuswamy
,
J.
,
2021
, “
Biomechanical Micromotion at the Neural Interface Modulates Intracellular Membrane Potentials in Vivo
,”
J. Neural. Eng.
,
18
(
4
), p.
045010
.
6.
Salatino
,
J. W.
,
Ludwig
,
K. A.
,
Kozai
,
T. D. Y.
, and
Purcell
,
E. K.
,
2017
, “
Glial Responses to Implanted Electrodes in the Brain
,”
Nat. Biomed. Eng.
,
1
(
11
), pp.
862
877
.
7.
Eles
,
J. R.
,
Vazquez
,
A. L.
,
Kozai
,
T. D. Y.
, and
Cui
,
X. T.
,
2018
, “
In Vivo Imaging of Neuronal Calcium During Electrode Implantation: Spatial and Temporal Mapping of Damage and Recovery
,”
Biomaterials
,
174
, pp.
79
94
.
8.
Kozai
,
T. D. Y.
,
Catt
,
K.
,
Li
,
X.
,
Gugel
,
Z. V.
,
Vazquez
,
A. L.
,
Cui
,
X. T.
, and
Olafsson
,
V. T.
,
2015
, “
Mechanical Failure Modes of Chronically Implanted Planar Silicon-Based Neural Probes for Laminar Recording
,”
Biomaterials
,
37
, pp.
25
39
.
9.
Luan
,
L.
,
Wei
,
X.
,
Zhao
,
Z.
,
Siegel
,
J. J.
,
Potnis
,
O.
,
Tuppen
,
C. A.
,
Lin
,
S.
, et al
,
2017
, “
Ultraflexible Nanoelectronic Probes Form Reliable, Glial Scar-Free Neural Integration
,”
Sci. Adv.
,
3
(
2
), p.
e1601966
.
10.
Patel
,
P. R.
,
Zhang
,
H.
,
Robbins
,
M. T.
,
Nofar
,
J. B.
,
Marshall
,
S. P.
,
Kobylarek
,
M. J.
,
Kozai
,
T. D.
,
Kotov
,
N. A.
, and
Chestek
,
C. A.
,
2016
, “
Chronic in Vivo Stability Assessment of Carbon Fiber Microelectrode Arrays
,”
J. Neural. Eng.
,
13
(
6
), p.
066002
.
11.
Lecomte
,
A.
,
Descamps
,
E.
, and
Bergaud
,
C.
,
2018
, “
A Review on Mechanical Considerations for Chronically-Implanted Neural Probes
,”
J. Neural. Eng.
,
15
(
3
), p.
031001
.
12.
Timoshenko
,
S. P.
,
1936
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York, London
.
13.
Sridharan
,
A.
,
Kodibagkar
,
V.
, and
Muthuswamy
,
J.
,
2019
, “
Penetrating Microindentation of Hyper-Soft, Conductive Silicone Neural Interfaces in Vivo Reveals Significantly Lower Mechanical Stresses
,”
MRS Adv.
,
4
(
46–47
), pp.
2551
2558
.
14.
Wei
,
X.
,
Luan
,
L.
,
Zhao
,
Z.
,
Li
,
X.
,
Zhu
,
H.
,
Potnis
,
O.
, and
Xie
,
C.
,
2018
, “
Nanofabricated Ultraflexible Electrode Arrays for High-Density Intracortical Recording
,”
Adv. Sci.
,
5
(
6
), p.
1700625
.
15.
Yang
,
X.
,
Zhou
,
T.
,
Zwang
,
T. J.
,
Hong
,
G.
,
Zhao
,
Y.
,
Viveros
,
R. D.
,
Fu
,
T.-M.
,
Gao
,
T.
, and
Lieber
,
C. M.
,
2019
, “
Bioinspired Neuron-Like Electronics
,”
Nat. Mater.
,
18
(
5
), pp.
510
517
.
16.
Schiavone
,
P.
,
Chassat
,
F.
,
Boudou
,
T.
,
Promayon
,
E.
,
Valdivia
,
F.
, and
Payan
,
Y.
,
2009
, “
In Vivo Measurement of Human Brain Elasticity Using a Light Aspiration Device
,”
Med. Image Anal.
,
13
(
4
), pp.
673
678
.
17.
Sharp
,
A. A.
,
Ortega
,
A. M.
,
Restrepo
,
D.
,
Curran-Everett
,
D.
, and
Gall
,
K.
,
2009
, “
In Vivo Penetration Mechanics and Mechanical Properties of Mouse Brain Tissue at Micrometer Scales
,”
IEEE Trans. Biomed. Eng.
,
56
(
1
), pp.
45
53
.
18.
Sharafkhani
,
N.
,
Kouzani
,
A. Z.
,
Adams
,
S. D.
,
Long
,
J. M.
,
Lissorgues
,
G.
,
Rousseau
,
L.
, and
Orwa
,
J. O.
,
2022
, “
Neural Tissue-Microelectrode Interaction: Brain Micromotion, Electrical Impedance, and Flexible Microelectrode Insertion
,”
J. Neurosci. Methods
,
365
, p.
109388
.
19.
Zhang
,
S.
,
Wang
,
C.
,
Linghu
,
C.
,
Wang
,
S.
, and
Song
,
J.
,
2021
, “
Mechanics Strategies for Implantation of Flexible Neural Probes
,”
ASME J. Appl. Mech.
,
88
(
1
), p. 010801.
20.
Atkinson
,
D.
,
D'Souza
,
T.
,
Rajput
,
J. S.
,
Tasnim
,
N.
,
Muthuswamy
,
J.
,
Marvi
,
H.
, and
Pancrazio
,
J. J.
,
2021
, “
Advances in Implantable Microelectrode Array Insertion and Positioning
,”
Neuromodulation: Tech. Neural Interface.
21.
Zhang
,
S.
,
Wang
,
C.
,
Gao
,
H.
,
Yu
,
C.
,
Yan
,
Q.
,
Lu
,
Y.
,
Tao
,
Z.
, et al
,
2020
, “
A Removable Insertion Shuttle for Ultraflexible Neural Probe Implantation With Stable Chronic Brain Electrophysiological Recording
,”
Adv. Mater. Interfaces
,
7
(
6
), p.
1901775
.
22.
Na
,
K.
,
Sperry
,
Z. J.
,
Lu
,
J.
,
Vöröslakos
,
M.
,
Parizi
,
S. S.
,
Bruns
,
T. M.
,
Yoon
,
E.
, and
Seymour
,
J. P.
,
2020
, “
Novel Diamond Shuttle to Deliver Flexible Neural Probe With Reduced Tissue Compression
,”
Microsyst. Nanoeng.
,
6
(
1
), p.
37
.
23.
Joo
,
H. R.
,
Fan
,
J. L.
,
Chen
,
S.
,
Pebbles
,
J. A.
,
Liang
,
H.
,
Chung
,
J. E.
,
Yorita
,
A. M.
, et al
,
2019
, “
A Microfabricated, 3D-Sharpened Silicon Shuttle for Insertion of Flexible Electrode Arrays Through Dura Mater Into Brain
,”
J. Neural. Eng.
,
16
(
6
), p.
066021
.
24.
Rezaei
,
S.
,
Xu
,
Y.
, and
Pang
,
S. W.
,
2019
, “
Control of Neural Probe Shank Flexibility by Fluidic Pressure in Embedded Microchannel Using PDMS/PI Hybrid Substrate
,”
PLoS One
,
14
(
7
), p.
e0220258
.
25.
Tang
,
C.
,
Xie
,
S.
,
Wang
,
M.
,
Feng
,
J.
,
Wu
,
X.
,
Wang
,
L.
,
Chen
,
C.
, et al
,
2020
, “
A Fiber-Shaped Neural Probe With Alterable Elastic Moduli for Direct Implantation and Stable Electronic-Brain Interfaces
,”
J. Mater. Chem. B
,
8
(
20
), pp.
4387
4394
.
26.
Pimenta
,
S.
,
Rodrigues
,
J. A.
,
Machado
,
F.
,
Ribeiro
,
J. F.
,
Maciel
,
M. J.
,
Bondarchuk
,
O.
,
Monteiro
,
P.
,
Gaspar
,
J.
,
Correia
,
J. H.
, and
Jacinto
,
L.
,
2021
, “
Double-Layer Flexible Neural Probe With Closely Spaced Electrodes for High-Density in Vivo Brain Recordings
,”
Front. Neurosci.
,
15
, p.
663174
.
27.
Wen
,
X.
,
Wang
,
B.
,
Huang
,
S.
,
Liu
,
T. L.
,
Lee
,
M.-S.
,
Chung
,
P.-S.
,
Chow
,
Y. T.
, et al
,
2019
, “
Flexible, Multifunctional Neural Probe With Liquid Metal Enabled, Ultra-Large Tunable Stiffness for Deep-Brain Chemical Sensing and Agent Delivery
,”
Biosens. Bioelectron.
,
131
, pp.
37
45
.
28.
Ceyssens
,
F.
,
Bovet Carmona
,
M.
,
Kil
,
D.
,
Deprez
,
M.
,
Tooten
,
E.
,
Nuttin
,
B.
,
Takeoka
,
A.
,
Balschun
,
D.
,
Kraft
,
M.
, and
Puers
,
R.
,
2019
, “
Chronic Neural Recording With Probes of Subcellular Cross-Section Using 0.06 mm2 Dissolving Microneedles as Insertion Device
,”
Sens. Actuators, B
,
284
, pp.
369
376
.
29.
Pas
,
J.
,
Rutz
,
A. L.
,
Quilichini
,
P. P.
,
Slézia
,
A.
,
Ghestem
,
A.
,
Kaszas
,
A.
,
Donahue
,
M. J.
, et al
,
2018
, “
A Bilayered PVA/PLGA-Bioresorbable Shuttle to Improve the Implantation of Flexible Neural Probes
,”
J. Neural. Eng.
,
15
(
6
), p.
065001
.
30.
Wang
,
X.
,
Hirschberg
,
A. W.
,
Xu
,
H.
,
Slingsby-Smith
,
Z.
,
Lecomte
,
A.
,
Scholten
,
K.
,
Song
,
D.
, and
Meng
,
E.
,
2020
, “
A Parylene Neural Probe Array for Multi-Region Deep Brain Recordings
,”
J. Microelectromech. Syst.
,
29
(
4
), pp.
499
513
.
31.
Shoffstall
,
A. J.
,
Srinivasan
,
S.
,
Willis
,
M.
,
Stiller
,
A. M.
,
Ecker
,
M.
,
Voit
,
W. E.
,
Pancrazio
,
J. J.
, and
Capadona
,
J. R.
,
2018
, “
A Mosquito Inspired Strategy to Implant Microprobes Into the Brain
,”
Sci. Rep.
,
8
(
1
), p.
122
.
32.
Jaroch
,
D. B.
,
Ward
,
M. P.
,
Chow
,
E. Y.
,
Rickus
,
J. L.
, and
Irazoqui
,
P. P.
,
2009
, “
Magnetic Insertion System for Flexible Electrode Implantation
,”
J. Neurosci. Methods
,
183
(
2
), pp.
213
222
.
33.
Gao
,
L.
,
Wang
,
J.
,
Guan
,
S.
,
Du
,
M.
,
Wu
,
K.
,
Xu
,
K.
,
Zou
,
L.
,
Tian
,
H.
, and
Fang
,
Y.
,
2019
, “
Magnetic Actuation of Flexible Microelectrode Arrays for Neural Activity Recordings
,”
Nano Lett.
,
19
(
11
), pp.
8032
8039
.
34.
Dryg
,
I. D.
,
Ward
,
M. P.
,
Qing
,
K. Y.
,
Mei
,
H.
,
Irazoqui
,
P. P.
, and
Schaffer
,
J. E.
,
2015
, “
Magnetically Inserted Neural Electrodes: Tissue Response and Functional Lifetime
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
4
), pp.
562
571
.
35.
Ilami
,
M.
,
Ahmed
,
R. J.
,
Petras
,
A.
,
Beigzadeh
,
B.
, and
Marvi
,
H.
,
2020
, “
Magnetic Needle Steering in Soft Phantom Tissue
,”
Sci. Rep.
,
10
(
1
), p.
2500
.
36.
Arafat
,
M. A.
,
Rubin
,
L. N.
,
Jefferys
,
J. G. R.
, and
Irazoqui
,
P. P.
,
2019
, “
A Method of Flexible Micro-Wire Electrode Insertion in Rodent for Chronic Neural Recording and a Device for Electrode Insertion
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
9
), pp.
1724
1731
.
37.
ChunXiang
,
T.
, and
Jiping
,
H.
,
2006
, “
Monitoring Insertion Force and Electrode Impedance During Implantation of Microwire Electrodes
,”
IEEE Engineering in Medicine and Biology 27th Annual Conference
,
Shanghai, China
,
Jan. 17–18
, pp.
7333
7336
.
38.
Molloy
,
J. A.
,
Ritter
,
R. C.
,
Grady
,
M. S.
,
Howard
,
M. A.
,
Quate
,
E. G.
, and
Gillies
,
G. T.
,
1990
, “
Experimental Determination of the Force Required for Insertion of a Thermoseed Into Deep Brain Tissues
,”
Ann. Biomed. Eng.
,
18
(
3
), pp.
299
313
.
39.
Howard
,
M. A.
,
Abkes
,
B. A.
,
Ollendieck
,
M. C.
,
Noh
,
M. D.
,
Ritter
,
C.
, and
Gillies
,
G. T.
,
1999
, “
Measurement of the Force Required to Move a Neurosurgical Probe Through in Vivo Human Brain Tissue
,”
IEEE Trans. Biomed. Eng.
,
46
(
7
), pp.
891
894
.
40.
Vitale
,
F.
,
Vercosa
,
D. G.
,
Rodriguez
,
A. V.
,
Pamulapati
,
S. S.
,
Seibt
,
F.
,
Lewis
,
E.
,
Yan
,
J. S.
, et al
,
2018
, “
Fluidic Microactuation of Flexible Electrodes for Neural Recording
,”
Nano. Lett.
,
18
(
1
), pp.
326
335
.
41.
Altuna
,
A.
,
Bellistri
,
E.
,
Cid
,
E.
,
Aivar
,
P.
,
Gal
,
B.
,
Berganzo
,
J.
,
Gabriel
,
G.
, et al
,
2013
, “
SU-8 Based Microprobes for Simultaneous Neural Depth Recording and Drug Delivery in the Brain
,”
Lab Chip
,
13
(
7
), pp.
1422
1430
.
42.
Márton
,
G.
,
Tóth
,
E. Z.
,
Wittner
,
L.
,
Fiáth
,
R.
,
Pinke
,
D.
,
Orbán
,
G.
,
Meszéna
,
D.
, et al
,
2020
, “
The Neural Tissue Around SU-8 Implants: A Quantitative in Vivo Biocompatibility Study
,”
Mater. Sci. Eng. C
,
112
, p.
110870
.
43.
Sridharan
,
A.
,
Muthuswamy
,
J.
,
Nguyen
,
J. K.
, and
Capadona
,
J. R.
,
2015
, “
Compliant Intracortical Implants Reduce Strains and Strain Rates in Brain Tissue in Vivo
,”
J. Neural. Eng.
,
12
(
3
), p.
036002
.
44.
Maleki
,
V. A.
, and
Mohammadi
,
N.
,
2017
, “
Buckling Analysis of Cracked Functionally Graded Material Column with Piezoelectric Patches
,”
Smart Mater. Struct.
,
26
(
3
), p.
035031
.
45.
Shigley
,
J. E.
,
1977
,
Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
46.
Subbaroyan
,
J.
,
Martin
,
D. C.
, and
Kipke
,
D. R.
,
2005
, “
A Finite-Element Model of the Mechanical Effects of Implantable Microelectrodes in the Cerebral Cortex
,”
J. Neural. Eng.
,
2
(
4
), pp.
103
113
.
You do not currently have access to this content.