Abstract

Manufacturing processes involving moving heat sources include additive manufacturing, welding, laser processing (cladding and heat treatment), machining, and grinding. These processes involve high local thermal stresses that induce plasticity and result in permanent residual stress and distortion. The residual stresses are typically calculated numerically at great computational expense despite the fact that the inelastic fraction of the domain is very small. Efforts to decouple the small plastic part from the large elastic part have led to the development of the tendon force concept. The tendon force can be predicted analytically for the case of infinitely rigid components; however, this limitation has prevented the broader use of the concept in practical applications. This work presents a rigorous mathematical treatment using dimensional analysis, asymptotics, and blending which demonstrates that the effect of geometric compliance depends on a single dimensionless group, the Okerblom number. Closed-form expressions are derived to predict the effect of compliance without the need for empirical ad-hoc fitting or calibration. The proposed expressions require input of only material properties and tabulated process parameters and are thus ideally suited for use in metamodels and design calculations, as well as incorporation into engineering codes and standards.

References

1.
Dwight
,
J. B.
, and
Moxham
,
K. E.
,
1969
, “
Welded Steel Plates in Compression
,”
Struct. Eng.
,
47
(
2
), pp.
49
66
.
2.
Sasayama
,
T.
,
Masubuchi
,
K.
, and
Moriguchi
,
S.
,
1955
, “
Longitudinal Deformation of Long Beam Due to Fillet Welding
,”
Welding J.
,
34
(
12
), pp.
581s
582s
.
3.
Blodgett
,
O. W.
,
1966
, “Joint Design and Production: Control of Shrinkage and Distortion,”
Design of Welded Structures
,
The James F. Lincoln Arc Welding Foundation
,
Cleveland, OH
, Chap. 7.7.
4.
Watanabe
,
M.
,
1954
, “
Thermal Stress and Its Residual Stress of Rectangular Plate Under One-dimensionally Distributed Temperature
,”
J. Zosen Kiokai [in Japanese]
,
1954
(
86
), pp.
173
184
.
5.
Ueda
,
Y.
,
Fukuda
,
K.
,
Nakacho
,
K.
, and
Endo
,
S.
,
1975
, “
A New Measuring Method of Residual Stresses With the Aid of Finite Element Method and Reliability of Estimated Values
,”
Trans. JWRI
,
4
(
2
), pp.
123
131
.
6.
Denlinger
,
E. R.
,
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2015
, “
Effect of Inter-Layer Dwell Time on Distortion and Residual Stress in Additive Manufacturing of Titanium and Nickel Alloys
,”
J. Mater. Process. Technol.
,
215
(
14
), pp.
123
131
.
7.
Bass
,
L.
,
Milner
,
J.
,
Gnäupel-Herold
,
T.
, and
Moylan
,
S.
,
2018
, “
Residual Stress in Additive Manufactured Nickel Alloy 625 Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061004
.
8.
Okerblom
,
N. O.
,
1955
, (Transl. by London: HMSO, 1958). Raschet Deformatsii Metallokonstruktsii pri Svarke [The Calculations of Deformations of Welded Metal Structures]. Mashgiz, Moscow.
9.
White
,
J. D.
,
1977
, “
Longitudinal Stresses in a Member Containing Non-Interacting Welds
,”
University of Cambridge
, Technical Report. CUED/C-Struct/TR.58.
10.
White
,
J.
,
1977
, “
Longitudinal Shrinkage of a Single Pass Weld
.”
University of Cambridge
, Technical Report, CUED/C-Struct/TR.57.
11.
Ueda
,
Y.
, and
Yuan
,
M. G.
,
1993
, “
Prediction of Residual Stresses in Butt Welded Plates Using Inherent Strains
,”
ASME J. Eng. Mater. Technol.
,
115
(
4
), pp.
417
423
.
12.
Terasaki
,
T.
,
Nakatani
,
M.
, and
Ishimura
,
T.
,
2000
, “
Study of Tendon Force Generating in Welded Joint
,”
Q. J. Jpn. Weld. Soc. [in Japanese]
,
18
(
3
), pp.
479
486
.
13.
Terasaki
,
T.
,
Ishimura
,
T.
,
Matsuishi
,
K.
, and
Akiyama
,
T.
,
2002
, “
Study on Longitudinal Shrinkage of Bead on Plate
,”
Q. J. Jpn. Weld. Soc. [in Japanese]
,
20
(
1
), pp.
136
142
.
14.
Okano
,
S.
, and
Mochizuki
,
M.
,
2015
, “
Dominant Factors and Quantification of Tendon Force in Welded Structural Materials
,”
Trans. JSME [in Japanese]
,
81
(
830
), pp.
15
00277
.
15.
Yuan
,
M. G.
, and
Ueda
,
Y.
,
1996
, “
Prediction of Residual Stresses in Welded T- and I-joints Using Inherent Strains
,”
ASME J. Eng. Mater. Technol.
,
118
(
2
), pp.
229
234
.
16.
Terasaki
,
T.
,
Kitamura
,
T.
,
Kidota
,
I.
,
Ishimura
,
T.
, and
Hamashima
,
S.
,
2003
, “
Study on Longitudinal Shrinkage and Bending Distortion of Fillet T Joint
,”
Q. J. Jpn. Weld. Soc. [in Japanese]
,
21
(
1
), pp.
81
86
.
17.
Kuzminov
,
S. A.
,
1974
, Svarochnie Deformazii Sudovich Korpusnich Konstrukzii [Welding Deformations of Ship Structures], Sudostroenie, Leningrad (in Russian).
18.
Wang
,
Y.
,
Lu
,
Y.
,
Grams
,
M. R.
,
Hintze Cesaro
,
A.
, and
Mendez
,
P. F.
,
2019
, “Asymptotics and Blending in the Modelling of Welding,”
Mathematical Modelling of Weld Phenomena, vol. 12
,
C.
Sommitsch
,
N.
Enzinger
, and
P.
Mayr
, eds.,
TU Graz
,
Graz, Austria
, pp.
907
932
.
19.
Mendez
,
P. F.
,
2020
, “
Reduced Order Models for Welding and Solidification Processes
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
861
, p.
012003
.
20.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(
6
), pp.
1121
1128
.
21.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1974
, “
A Standardized Procedure for the Production of Correlations in the Form of a Common Empirical Equation
,”
Ind. Eng. Chem. Fundam.
,
13
(
1
), pp.
39
44
.
22.
Mendez
,
P. F.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Scaling Analysis of a Moving Point Heat Source in Steady-State on a Semi-Infinite Solid
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
8
), p.
081301
.
23.
Wang
,
Y.
,
Lu
,
Y.
, and
Mendez
,
P. F.
,
2019
, “
Scaling Expressions of Characteristic Values for a Moving Point Heat Source in Steady State on a Semi-Infinite Solid
,”
Int. J. Heat Mass Transfer
,
135
, pp.
1118
1129
.
24.
Lu
,
Y.
,
Wang
,
Y.
, and
Mendez
,
P. F.
,
2020
, “
Width of Thermal Features Induced by a 2-D Moving Heat Source
,”
Int. J. Heat Mass Transfer
,
156
, p.
119793
.
25.
Lu
,
Y.
, and
Mendez
,
P. F.
,
2021
, “
Characteristic Values of the Temperature Field Induced by a Moving Line Heat Source
,”
Int. J. Heat Mass Transfer
,
166
, p.
120671
.
26.
Grams
,
M. R.
, and
Mendez
,
P. F.
,
2021
, “
A General Expression for the Welding Tendon Force
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
121002
.
27.
Grams
,
M. R.
, and
Mendez
,
P. F.
,
2021
, “
Scaling Analysis of the Thermal Stress Field Produced by a Moving Point Heat Source in a Thin Plate
,”
ASME J. Appl. Mech.
,
88
(
1
), p.
011001
.
28.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
Trans. ASME
,
68
(
11
), pp.
849
866
.
29.
Satoh
,
K.
,
1972
, “
Transient Thermal Stresses of Weld Heat-Affected Zone by Both-Ends-Fixed Bar Analogy
,”
Trans. JWS
,
3
(
1
), pp.
125
134
.
30.
Luo
,
Y.
,
Murakawa
,
H.
, and
Ueda
,
Y.
,
1997
, “
Prediction of Welding Deformation and Residual Stress by Elastic FEM Based on Inherent Strain (1st Report): Mechanism of Inherent Strain Production
,”
Trans. JWRI
,
26
(
2
), pp.
49
57
.
31.
Boulton
,
N. S.
, and
Lance Martin
,
H. E.
,
1936
, “
Residual Stresses in Arc-Welded Plates
,”
Proc. Inst. Mech. Eng.
,
133
(
1
), pp.
295
347
.
32.
Rosenthal
,
D.
,
1941
, “
Mathematical Theory of Heat Distribution During Welding and Cutting
,”
Welding J.
,
20
(
5
), pp.
220s
234s
.
33.
Tall
,
L.
,
1964
, “
Residual Stresses in Welded Plates – A Theoretical Study
,”
Welding J.
,
43
(
1
), pp.
10s
23s
.
34.
Grams
,
M. R.
,
Ludwig
,
L.
, and
Mendez
,
P. F.
,
2021
, “
A Quantitative Index to Assess the Influence of Joint Fit-up on Pipeline Weld Root Discontinuities
,”
ASME 2020 13th International Pipeline Conference
,
Calgary, AB, Canada
,
Sept. 28–30
, p.
V003T05A032
.
35.
Satoh
,
K.
,
Toyoda
,
M.
,
Suita
,
Y.
,
Tanaka
,
M.
, and
Hirano
,
T.
,
1986
, “
Controlling Parameters of Residual Stresses and Deformations in Welded Thin Cylindrical Shells
,”
Trans. JWS
,
17
(
1
), pp.
3
9
.
36.
Timoshenko
,
S.
,
1940
, “Combined Bending and Tension,”
Strength of Materials, Part I: Elementary Theory and Problems
, 2nd ed.,
D. Van Nostrand Company, Inc.
,
New York
, pp.
226
260
.
37.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
, “General Theory of Cylindrical Shells,”
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill Book Company
,
New York
, pp.
466
532
.
38.
Timoshenko
,
S.
,
1940
, “Special Problems in Bending of Beams,”
Strength of Materials, Part II: Advanced Theory and Problems
, 2nd ed.,
D. Van Nostrand Company, Inc.
,
New York
, pp.
1
64
.
You do not currently have access to this content.