Abstract

A new model for circular cylindrical Kirchhoff–Love shells of flexoelectric–elastic materials with the centrosymmetric cubic symmetry is developed by considering both microstructure and flexoelectric effects. The couple stress theory is used to describe microstructure effects, and a curvature-based flexoelectricity theory is applied to account for flexoelectric effects. The governing equations and boundary conditions are simultaneously derived through a variational formulation based on Hamilton’s principle. The newly developed shell model recovers the model for Kirchhoff plates of cubic flexoelectric–elastic materials as a special case when the shell radius tends to infinity. To illustrate the new shell model, static bending, free vibration, and forced vibration problems of a simply supported axisymmetric circular cylindrical shell are analytically solved by directly applying the model. Numerical results reveal that the microstructure and flexoelectric effects lead to enhanced extensional and bending stiffnesses of the shell. In addition, the first and second natural frequencies of the shell predicted by the new model are found to be higher than those predicted by the classical elasticity-based model, but the difference is diminishing with the increase in the shell thickness. Furthermore, the results for both the mechanically and electrically forced vibrations given by the current model show that the deflection amplitude and the electric potential distribution in the shell are both frequency-dependent and can be tailored by controlling the excitation frequency. These findings indicate that a flexoelectric–elastic shell of a centrosymmetric cubic material can be used as a sensor for energy harvesting by converting mechanical energy to electricity or as an actuator by converting electrical energy to mechanical work.

References

1.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
387
421
.
2.
Yan
,
Z.
, and
Jiang
,
L. Y.
,
2015
, “
Effect of Flexoelectricity on the Electroelastic Fields of a Hollow Piezoelectric Nanocylinder
,”
Smart Mater. Struct.
,
24
(
6
), p.
065003
.
3.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
4.
Deng
,
Q.
,
Lv
,
S.
,
Li
,
Z.
,
Tan
,
K.
,
Liang
,
X.
, and
Shen
,
S.
,
2020
, “
The Impact of Flexoelectricity on Materials, Devices, and Physics
,”
J. Appl. Phys.
,
128
(
8
), p.
080902
.
5.
Tagantsev
,
A. K.
,
Meunier
,
V.
, and
Sharma
,
P.
,
2009
, “
Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling
,”
MRS Bull.
,
34
(
9
), pp.
643
647
.
6.
Yan
,
Z.
, and
Jiang
,
L. Y.
,
2013
, “
Flexoelectric Effect on the Electroelastic Responses of Bending Piezoelectric Nanobeams
,”
J. Appl. Phys.
,
113
(
19
), p.
194102
.
7.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3218
3225
.
8.
Mao
,
S.
, and
Purohit
,
P. K.
,
2014
, “
Insights Into Flexoelectric Solids From Strain-Gradient Elasticity
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081004
.
9.
Yang
,
W.
,
Liang
,
X.
, and
Shen
,
S.
,
2015
, “
Electromechanical Responses of Piezoelectric Nanoplates With Flexoelectricity
,”
Acta Mech.
,
226
(
9
), pp.
3097
3110
.
10.
Bhaskar
,
U. K.
,
Banerjee
,
N.
,
Abdollahi
,
A.
,
Wang
,
Z.
,
Schlom
,
D. G.
,
Rijnders
,
G.
, and
Catalan
,
G.
,
2016
, “
A Flexoelectric Microelectromechanical System on Silicon
,”
Nat. Nanotechnol.
,
11
(
3
), pp.
263
266
.
11.
Zhang
,
R.
,
Liang
,
X.
, and
Shen
,
S.
,
2016
, “
A Timoshenko Dielectric Beam Model With Flexoelectric Effect
,”
Meccanica
,
51
(
5
), pp.
1181
1188
.
12.
Xiang
,
S.
, and
Li
,
X. F.
,
2018
, “
Elasticity Solution of the Bending of Beams With the Flexoelectric and Piezoelectric Effects
,”
Smart Mater. Struct.
,
27
(
10
), p.
105023
.
13.
Zhao
,
M. H.
,
Liu
,
X.
,
Fan
,
C. Y.
,
Lu
,
C.
, and
Wang
,
B. B.
,
2020
, “
Theoretical Analysis on the Extension of a Piezoelectric Semi-Conductor Nanowire: Effects of Flexoelectricity and Strain Gradient
,”
J. Appl. Phys.
,
127
(
8
), p.
085707
.
14.
Kwon
,
S. R.
,
Huang
,
W. B.
,
Zhang
,
S. J.
,
Yuan
,
F. G.
, and
Jiang
,
X. N.
,
2013
, “
Flexoelectric Sensing Using a Multilayered Barium Strontium Titanate Structure
,”
Smart Mater. Struct.
,
22
(
11
), p.
115017
.
15.
Abdollahi
,
A.
,
Peco
,
C.
,
Millán
,
D.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2014
, “
Computational Evaluation of the Flexoelectric Effect in Dielectric Solids
,”
J. Appl. Phys.
,
116
(
9
), p.
093502
.
16.
Ray
,
M. C.
,
2016
, “
Analysis of Smart Nanobeams Integrated With a Flexoelectric Nano Actuator Layer
,”
Smart Mater. Struct.
,
25
(
5
), p.
055011
.
17.
Wang
,
K. F.
,
Wang
,
B. L.
, and
Zeng
,
S.
,
2018
, “
Analysis of an Array of Flexoelectric Layered Nanobeams for Vibration Energy Harvesting
,”
Compos. Struct.
,
187
, pp.
48
57
.
18.
Shu
,
L.
,
Liang
,
R.
,
Rao
,
Z.
,
Fei
,
L.
,
Ke
,
S.
, and
Wang
,
Y.
,
2019
, “
Flexoelectric Materials and Their Related Applications: A Focused Review
,”
J. Adv. Ceram.
,
8
(
2
), pp.
153
173
.
19.
Liu
,
L. P.
, and
Sharma
,
P.
,
2013
, “
Flexoelectricity and Thermal Fluctuations of Lipid Bilayer Membranes: Renormalization of Flexoelectric, Dielectric, and Elastic Properties
,”
Phys. Rev. E
,
87
(
3
), p.
032715
.
20.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
, pp.
209
227
.
21.
Mohammadi
,
P.
,
Liu
,
L. P.
, and
Sharma
,
P.
,
2014
, “
A Theory of Flexoelectric Membranes and Effective Properties of Heterogeneous Membranes
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011007
.
22.
Ahmadpoor
,
F.
, and
Sharma
,
P.
,
2015
, “
Flexoelectricity in Two-Dimensional Crystalline and Biological Membranes
,”
Nanoscale
,
7
(
40
), pp.
16555
16570
.
23.
Berg
,
M.
,
Hagedorn
,
P.
, and
Gutschmidt
,
S.
,
2004
, “
On the Dynamics of Piezoelectric Cylindrical Shells
,”
J. Sound Vib.
,
274
(
1–2
), pp.
91
109
.
24.
Wu
,
C. P.
, and
Syu
,
Y. S.
,
2007
, “
Exact Solutions of Functionally Graded Piezoelectric Shells Under Cylindrical Bending
,”
Int. J. Solids Struct.
,
44
(
20
), pp.
6450
6472
.
25.
Kheibari
,
F.
, and
Beni
,
Y. T.
,
2017
, “
Size Dependent Electro-Mechanical Vibration of Single-Walled Piezoelectric Nanotubes Using Thin Shell Model
,”
Mater. Des.
,
114
, pp.
572
583
.
26.
Kundalwal
,
S. I.
, and
Shingare
,
K. B.
,
2020
, “
Electromechanical Response of Thin Shell Laminated With Flexoelectric Composite Layer
,”
Thin Walled Struct.
,
157
, p.
107138
.
27.
Babadi
,
A. F.
, and
Beni
,
Y. T.
,
2020
, “
Size-Dependent Continuum-Based Model of a Flexoelectric Functionally Graded Cylindrical Nanoshells
,”
Math. Methods Appl. Sci.
28.
Mindlin
,
R. D.
, and
Eshel
,
N. N.
,
1968
, “
On First Strain-Gradient Theories in Linear Elasticity
,”
Int. J. Solids Struct.
,
4
(
1
), pp.
109
124
.
29.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.
30.
Gao
,
X.-L.
, and
Park
,
S. K.
,
2007
, “
Variational Formulation of a Simplified Strain Gradient Elasticity Theory and Its Application to a Pressurized Thick-Walled Cylinder Problem
,”
Int. J. Solids Struct.
,
44
(
22–23
), pp.
7486
7499
.
31.
Zhang
,
G. Y.
, and
Gao
,
X.-L.
,
2020
, “
A New Bernoulli–Euler Beam Model Based on a Reformulated Strain Gradient Elasticity Theory
,”
Math. Mech. Solids
,
25
(
3
), pp.
630
643
.
32.
Hu
,
S. L.
, and
Shen
,
S. P.
,
2010
, “
Variational Principles and Governing Equations in Nano-Dielectrics With the Flexoelectric Effect
,”
Sci. China Phys. Mech. Astron.
,
53
(
8
), pp.
1497
1504
.
33.
Dini
,
A.
,
Shariati
,
M.
,
Zarghami
,
F.
, and
Nematollahi
,
M. A.
,
2020
, “
Size-Dependent Analysis of a Functionally Graded Piezoelectric Micro-Cylinder Based on the Strain Gradient Theory With the Consideration of Flexoelectric Effect: Plane Strain Problem
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
8
), p.
410
.
34.
Lazopoulos
,
K. A.
, and
Lazopoulos
,
A. K.
,
2010
, “
Bending and Buckling of Thin Strain Gradient Elastic Beams
,”
Eur. J. Mech. A. Solids
,
29
(
5
), pp.
837
843
.
35.
Toupin
,
R. A.
,
1962
, “
Elastic Materials With Couple-Stresses
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
385
414
.
36.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
,
1962
, “
Effects of Couple-Stresses in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
415
448
.
37.
Koiter
,
W. T.
,
1964
, “
Couple-Stresses in the Theory of Elasticity
,”
Proc. K. Ned. Akad. Wet. B
,
67
, pp.
17
44
.
38.
Park
,
S. K.
, and
Gao
,
X.-L.
,
2006
, “
Bernoulli–Euler Beam Model Based on a Modified Couple Stress Theory
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2355
2359
.
39.
Park
,
S. K.
, and
Gao
,
X.-L.
,
2008
, “
Variational Formulation of a Modified Couple Stress Theory and Its Application to a Simple Shear Problem
,”
Z. Angew. Math. Phys.
,
59
(
5
), pp.
904
917
.
40.
Gad
,
A. I.
, and
Gao
,
X.-L.
,
2021
, “
Two Versions of the Extended Hill’s Lemma for Non-Cauchy Continua Based on the Couple Stress Theory
,”
Math. Mech. Solids
,
26
(
2
), pp.
244
262
.
41.
Li
,
A.
,
Zhou
,
S.
,
Qi
,
L.
, and
Chen
,
X.
,
2016
, “
A Flexoelectric Theory With Rotation Gradient Effects for Elastic Dielectrics
,”
Modell. Simul. Mater. Sci. Eng.
,
24
(
1
), p.
015009
.
42.
Poya
,
R.
,
Gil
,
A. J.
,
Ortigosa
,
R.
, and
Palma
,
R.
,
2019
, “
On a Family of Numerical Models for Couple Stress Based Flexoelectricity for Continua and Beams
,”
J. Mech. Phys. Solids
,
125
, pp.
613
652
.
43.
Qu
,
Y. L.
,
Guo
,
Z. W.
,
Jin
,
F.
, and
Zhang
,
G. Y.
,
2022
, “
A Non-Classical Theory of Elastic Dielectrics Incorporating Couple Stress and Quadrupole Effects: Part II-Variational Formulations and Applications in Plates
,”
Math. Mech. Solids
.
44.
Zhang
,
G. Y.
,
He
,
Z. Z.
,
Gao
,
X.-L.
, and
Zhou
,
H. W.
,
2022
, “
Band Gaps in a Periodic Electro-elastic Composite Beam Structure Incorporating Microstructure and Flexoelectric Effects
,”
Arch. Appl. Mech
.
45.
Razavi
,
H.
,
Babadi
,
A. F.
, and
Beni
,
Y. T.
,
2017
, “
Free Vibration Analysis of Functionally Graded Piezoelectric Cylindrical Nanoshell Based on Consistent Couple Stress Theory
,”
Compos. Struct.
,
160
, pp.
1299
1309
.
46.
Zeng
,
S.
,
Wang
,
B. L.
, and
Wang
,
K. F.
,
2019
, “
Analyses of Natural Frequency and Electromechanical Behavior of Flexoelectric Cylindrical Nanoshells Under Modified Couple Stress Theory
,”
J. Vib. Control
,
25
(
3
), pp.
559
570
.
47.
Wang
,
G.-F.
,
Yu
,
S.-W.
, and
Feng
,
X.-Q.
,
2004
, “
A Piezoelectric Constitutive Theory With Rotation Gradient Effects
,”
Eur. J. Mech. A/Solids
,
23
(
3
), pp.
455
466
.
48.
Qu
,
Y. L.
,
Zhang
,
G. Y.
,
Fan
,
Y. M.
, and
Jin
,
F.
,
2021
, “
A Non-Classical Theory of Elastic Dielectrics Incorporating Couple Stress and Quadrupole Effects: Part I—Reconsideration of Curvature-Based Flexoelectricity Theory
,”
Math. Mech. Solids
,
26
(
11
), pp.
1647
1659
.
49.
Tiersten
,
H. F.
,
1969
,
Linear Piezoelectric Plate Vibrations
,
Pleum
,
New York
.
50.
Haussühl
,
S.
,
2007
,
Physical Properties of Crystals: An Introduction
,
Wiley-VCH
,
Weinheim, Germany
.
51.
Leissa
,
A. W.
,
1973
,
Vibration of Shells, NASA SP-288, Scientific and Technical Information Office
,
National Aeronautics and Space Administration
,
Washington, DC
.
52.
Zhang
,
G. Y.
,
Gao
,
X.-L.
, and
Littlefield
,
A. G.
,
2021
, “
A Non-Classical Model for Circular Cylindrical Thin Shells Incorporating Microstructure and Surface Energy Effects
,”
Acta Mech.
,
232
(
6
), pp.
2225
2248
.
53.
Mindlin
,
R. D.
,
1974
, “
Equations of High Frequency Vibrations of Thermopiezoelectric Crystal Plates
,”
Int. J. Solids Struct.
,
10
(
6
), pp.
625
637
.
54.
Qu
,
Y. L.
,
Jin
,
F.
, and
Yang
,
J.
,
2021
, “
Buckling of Flexoelectric Semiconductor Beams
,”
Acta Mech.
,
232
(
7
), pp.
2623
2633
.
55.
Ma
,
H. M.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2011
, “
A Non-Classical Mindlin Plate Model Based on a Modified Couple Stress Theory
,”
Acta Mech.
,
220
(
1–4
), pp.
217
235
.
56.
Reddy
,
J. N.
,
2002
,
Energy Principles and Variational Methods in Applied Mechanics
, 2nd ed.,
Wiley
,
New York
.
57.
Gao
,
X.-L.
, and
Mall
,
S.
,
2001
, “
Variational Solution for a Cracked Mosaic Model of Woven Fabric Composites
,”
Int. J. Solids Struct.
,
38
(
5
), pp.
855
874
.
58.
Zhang
,
G. Y.
, and
Gao
,
X.-L.
,
2021
, “
A Non-Classical Model for First-Order Shear Deformation Circular Cylindrical Thin Shells Incorporating Microstructure and Surface Energy Effects
,”
Math. Mech. Solids
,
26
(
9
), pp.
1294
1319
.
59.
Sze
,
S. M.
, and
Ng
,
K. K.
,
2006
,
Physics of Semiconductor Devices
, 3rd ed.,
Wiley
,
New York
.
60.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2011
, “
Size-Dependent Pull-in Instability of Electrostatically Actuated Microbeam-Based MEMS
,”
J. Micromech. Microeng.
,
21
(
2
), p.
027001
.
61.
Qu
,
Y. L.
,
Zhang
,
G. Y.
,
Gao
,
X.-L.
, and
Jin
,
F.
,
2022
, “
A New Model for Thermally Induced Redistributions of Free Carriers in Centrosymmetric Flexoelectric Semiconductor Beams
,”
Mech. Mater.
,
171
, p.
104328
.
62.
Zhang
,
G. Y.
,
Guo
,
Z. W.
,
Qu
,
Y. L.
,
Gao
,
X.-L.
, and
Jin
,
F.
,
2022
, “
A New Model for Thermal Buckling of an Anisotropic Elastic Composite Beam Incorporating Piezoelectric, Flexoelectric and Semiconducting Effects
,”
Acta Mech.
,
233
(
5
), pp.
1719
1738
.
63.
Wang
,
L.
,
Liu
,
S.
,
Feng
,
X.
,
Zhang
,
C.
,
Zhu
,
L.
,
Zhai
,
J.
,
Qin
,
Y.
, and
Wang
,
Z. L.
,
2020
, “
Flexoelectronics of Centrosymmetric Semiconductors
,”
Nat. Nanotechnol.
,
15
(
8
), pp.
661
667
.
64.
Jiang
,
S.
,
Li
,
X.
,
Guo
,
S.
,
Hu
,
Y.
,
Yang
,
J.
, and
Jiang
,
Q.
,
2005
, “
Performance of a Piezoelectric Bimorph for Scavenging Vibration Energy
,”
Smart Mater. Struct.
,
14
(
4
), pp.
769
774
.
65.
Yang
,
J.
,
2006
,
The Mechanics of Piezoelectric Structures
,
World Scientific
,
Singapore
.
You do not currently have access to this content.