Abstract

A micromechanics-based ductile fracture initiation theory is developed and applied for high-throughput assessment of ductile failure in plane stress. A key concept is that of inhomogeneous yielding such that microscopic failure occurs in bands with the driving force being a combination of band-resolved normal and shear tractions. The new criterion is similar to the phenomenological Mohr–Coulomb model, but the sensitivity of fracture initiation to the third stress invariant constitutes an emergent outcome of the formulation. Salient features of a fracture locus in plane stress are parametrically analyzed. In particular, it is shown that a finite shear ductility cannot be rationalized based on an isotropic theory that proceeds from first principles. Thus, the isotropic formulation is supplemented with an anisotropic model accounting for void rotation and shape change to complete the prediction of a fracture locus and compare with experiments. A wide body of experimental data from the literature is explored, and a simple procedure for calibrating the theory is outlined. Comparisons with experiments are discussed in some detail.

References

1.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
ASME J. Eng. Mater. Technol.
,
126
(
3
), pp.
314
324
.
2.
Pardoen
,
T.
,
2006
, “
Numerical Simulation of Low Stress Triaxiality Ductile Fracture
,”
Comput. Struct.
,
84
, pp.
1641
1650
.
3.
Malcher
,
L.
,
Andrade Pires
,
F. M.
, and
César de Sà
,
J. M. A.
,
2014
, “
An Extended GTN Model for Ductile Fracture Under High and Low Stress Triaxiality
,”
Int. J. Plast.
,
54
, pp.
193
228
.
4.
Mohr
,
D.
, and
Marcadet
,
S.
,
2015
, “
Micromechanically-Motivated Phenomenological Hosford-Coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialities
,”
Int. J. Solids. Struct.
,
67–68
, pp.
40
55
.
5.
Pineau
,
A.
,
Benzerga
,
A. A.
, and
Pardoen
,
T.
,
2016
, “
Failure of Metals I. Brittle and Ductile Fracture
,”
Acta. Mater.
,
107
, pp.
424
483
.
6.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
2004
, “
Anisotropic Ductile Fracture. Part I: Experiments
,”
Acta. Mater.
,
52
, pp.
4623
4638
.
7.
Fourmeau
,
M.
,
Borvik
,
T.
,
Benallal
,
A.
, and
Hopperstad
,
O. S.
,
2013
, “
Anisotropic Failure Modes of High-Strength Aluminium Alloy Under Various Stress States
,”
Int. J. Plast.
,
48
, pp.
34
53
.
8.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr–Coulomb Criterion to Ductile Fracture
,”
Int. J. Fract.
,
161
, pp.
1
20
.
9.
Benzerga
,
A. A.
,
Besson
,
J.
,
Batisse
,
R.
, and
Pineau
,
A.
,
2002
, “
Synergistic Effects of Plastic Anisotropy and Void Coalescence on Fracture Mode in Plane Strain
,”
Modell. Simul. Mater. Sci. Eng.
,
10
, pp.
73
102
.
10.
Weck
,
A.
,
Wilkinson
,
D. S.
,
Maire
,
E.
, and
Toda
,
H.
,
2008
, “
Visualization by X-Ray Tomography of Void Growth and Coalescence Leading to Fracture in Model Materials
,”
Acta. Mater.
,
56
, pp.
2919
2928
.
11.
Benzerga
,
A. A.
,
Leblond
,
J.-B.
,
Needleman
,
A.
, and
Tvergaard
,
V.
,
2016
, “
Ductile Failure Modeling
,”
Int. J. Fract.
,
201
, pp.
29
80
.
12.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
2004
, “
Anisotropic Ductile Fracture. Part II: Theory
,”
Acta. Mater.
,
52
, pp.
4639
4650
.
13.
Kweon
,
S.
,
Sagsoy
,
B.
, and
Benzerga
,
A. A.
,
2016
, “
Constitutive Relations and Their Time Integration for Anisotropic Elasto-Plastic Porous Materials
,”
Comput. Methods. Appl. Mech. Eng.
,
310
, pp.
495
534
.
14.
Morin
,
L.
,
Leblond
,
J.-B.
, and
Tvergaard
,
V.
,
2016
, “
Application of a Model of Plastic Porous Materials Including Void Shape Effects to the Prediction of Ductile Failure Under Shear-Dominated Loadings
,”
J. Mech. Phys. Solids
,
94
, pp.
148
166
.
15.
Khan
,
I. A.
,
Srivastava
,
A.
,
Needleman
,
A.
, and
Benzerga
,
A. A.
,
2021
, “
An Analysis of Deformation and Failure in Rectangular Tensile Bars Accounting for Void Shape Changes
,”
Int. J. Fract.
,
230
, pp.
133
156
.
16.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup–Cone Fracture in a Round Tensile Bar
,”
Acta. Metall.
,
32
, pp.
157
169
.
17.
Nahshon
,
K.
, and
Hutchinson
,
J. W.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech.
,
27
, pp.
1
17
.
18.
Lou
,
Y.
,
Huh
,
H.
,
Lim
,
S.
, and
Pack
,
K.
,
2012
, “
New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals
,”
Int. J. Solids. Struct.
,
49
, pp.
3605
3615
.
19.
Torki
,
M. T.
,
Keralavarma
,
S. M.
, and
Benzerga
,
A. A.
,
2021
, “
An Analysis of Lode Effects in Ductile Failure
,”
J. Mech. Phys. Solids
,
153
, p.
104468
.
20.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I–Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
21.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
, pp.
389
407
.
22.
Torki
,
M. E.
, and
Benzerga
,
A. A.
,
2018
, “
A Mechanism of Failure in Shear Bands
,”
Extreme Mech. Lett.
,
23
, pp.
67
71
.
23.
Keralavarma
,
S. M.
, and
Benzerga
,
A. A.
,
2010
, “
A Constitutive Model for Plastically Anisotropic Solids With Non-Spherical Voids
,”
J. Mech. Phys. Solids
,
58
, pp.
874
901
.
24.
Besson
,
J.
,
2009
, “
Damage of Ductile Materials Deforming Under Multiple Plastic or Viscoplastic Mechanisms
,”
Int. J. Plast.
,
25
, pp.
2204
2221
.
25.
Benzerga
,
A. A.
,
2002
, “
Micromechanics of Coalescence in Ductile Fracture
,”
J. Mech. Phys. Solids
,
50
, pp.
1331
1362
.
26.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2014
, “
Effective Yield Criterion Accounting for Microvoid Coalescence
,”
J. Appl. Mech.
,
81
(
3
), p.
031009
.
27.
Hadamard
,
J.
,
1903
,
Leçons sur la propagation des ondes et les équations de l’hydrodynamique
,
Librairie Scientifique, A. Herrmann
,
Paris
, ch. 6.
28.
Rice
,
J. R.
, and
Koiter
,
T.
,
1976
,
The Localization of Plastic Deformation
,
North-Holland Publishing Co.
,
Amsterdam
, pp.
207
220
.
29.
Torki
,
M. E.
, and
Benzerga
,
A. A.
,
2018
, “
Micromechanics-Based Constitutive Relations for Post-Localization Analysis
,”
MethodsX
,
5C
, pp.
1431
1439
.
30.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1997
, “Recent Extensions of Gurson’s Model for Porous Ductile Metals,”
Continuum Micromechanics (CISM Lectures Series)
,
P.
,
Suquet
, ed.,
Springer
,
New York
, pp.
61
130
.
31.
Keralavarma
,
S. M.
, and
Chockalingam
,
S.
,
2016
, “
A Criterion for Void Coalescence in Anisotropic Ductile Materials
,”
Int. J. Plast.
,
82
, pp.
159
176
.
32.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London A
,
241
, pp.
376
396
.
33.
Kailasam
,
M.
, and
Ponte Castaneda
,
P.
,
1998
, “
A General Constitutive Theory for Linear and Nonlinear Particulate Media With Microstructure Evolution
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
427
465
.
34.
Leblond
,
J.-B.
, and
Mottet
,
G.
,
2008
, “
A Theoretical Approach of Strain Localization Within Thin Planar Bands in Porous Ductile Materials
,”
Compt. Rendus Mecaniq.
,
336
, pp.
176
189
.
35.
Ha
,
J.
,
Baral
,
M.
, and
Korkolis
,
Y. P.
,
2019
, “
Ductile Fracture of an Aluminum Sheet Under Proportional Loading
,”
J. Mech. Phys. Solids.
,
132
, pp.
103685
.
36.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids.
,
17
, pp.
201
217
.
37.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
44
, pp.
169
305
.
38.
Zhang
,
K. S.
,
Bai
,
J. B.
, and
Francois
,
D.
,
2001
, “
Numerical Analysis of the Influence of the Lode Parameter on Void Growth
,”
Int. J. Solids. Struct.
,
38
, pp.
5847
5856
.
39.
Leblond
,
J.-B.
, and
Morin
,
L.
,
2014
, “
Gurson’s Criterion and Its Derivation Revisited
,”
ASME J. Appl. Mech.
,
81
(5), p.
051012
.
40.
Papasidero
,
J.
,
Doquet
,
V.
, and
Mohr
,
D.
,
2015
, “
Ductile Fracture of Aluminum 2024-T351 Under Proportional and Non-Proportional Multi-Axial Loading: Bao-Wierzbicki Results Revisited
,”
Int. J. Solids. Struct.
,
69–70
, pp.
459
474
.
41.
Thomas
,
N.
,
Basu
,
S.
, and
Benzerga
,
A. A.
,
2016
, “
On Fracture Loci of Ductile Materials Under Nonproportional Loading
,”
Int. J. Mech. Sci.
,
117
, pp.
135
151
.
42.
Benzerga
,
A. A.
,
Thomas
,
N.
, and
Herrington
,
J. S.
,
2019
, “
Plastic Flow Anisotropy Drives Shear Fracture
,”
Sci. Rep.
,
9
, p. Art. No. 1425.
43.
Cooke
,
R. J.
, and
Kanvinde
,
A. M.
,
2015
, “
Constitutive Parameter Calibration for Structural Steel: Non-Uniqueness and Loss of Accuracy
,”
J. Constr. Steel. Res.
,
114
, pp.
394
404
.
You do not currently have access to this content.