Abstract

This paper presents a data-driven framework that can accurately predict the buckling loads of composite near-spherical shells (i.e., variants of regular icosahedral shells) under external pressure. This framework utilizes finite element simulations to generate data to train a machine learning regression model based on the open-source algorithm Extreme Gradient Boosting (XGBoost). The trained XGBoost machine learning model can then predict buckling loads of near-spherical shells with a small margin of error without time-consuming finite element simulations. Examples of near-spherical composite shells with various geometries and material layups demonstrate the efficiency and accuracy of the framework. The machine learning model removes the demanding hardware and software requirements on computing buckling loads of near-spherical shells, making it particularly suitable to users without access to those computational resources.

References

1.
Ozdemir
,
K.
, and
Halici
,
S. M.
,
2016
, “
Roll SEED Roll: An Architectural Assessment of a Spherical Mobile Habitat for Mars (SEED _ Spherical Environment Exploration Device)
,”
46th International Conference on Environmental Systems
,
Vienna, Austria
.
2.
Pedersen
,
P. T.
, and
Jensen
,
J. J.
,
1995
, “
Buckling Behaviour of Imperfect Spherical Shells Subjected to Different Load Conditions
,”
Thin-Walled Struct.
,
23
(
1
), pp.
41
55
.
3.
Pan
,
B.
, and
Cui
,
W.
,
2010
, “
An Overview of Buckling and Ultimate Strength of Spherical Pressure Hull Under External Pressure
,”
Mar. Struct.
,
23
(
3
), pp.
227
240
.
4.
Stickney
,
R. R.
,
Iwamoto
,
R.
, and
Rust
,
M.
,
2009
, “
Interactions of Fisheries and Fishing Communities Related to Aquaculture
,”
Proceedings of the 38th US-Japan Aquaculture Panel Symposium
,
Texas A&M University, Harte Research Institute
,
Corpus Christi, TX
,
Oct. 26–27
, pp.
66
70
.
5.
Blamont
,
J.
,
2008
, “
Planetary Balloons
,”
Exp. Astron.
,
22
(
1–2
), pp.
1
39
.
6.
Hajos
,
G.
,
Jones
,
J.
,
Behar
,
A.
, and
Dodd
,
M.
,
2005
, “
An Overview of Wind-Driven Rovers for Planetary Exploration
,”
43
rd
AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 10–13
, pp.
1
13
.
7.
Hutchinson
,
J. W.
,
1967
, “
Imperfection Sensitivity of Externally Pressurized Spherical Shells
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
49
55
.
8.
Karman
,
T. V.
, and
Tsien
,
H.
,
1939
, “
The Buckling of Spherical Shells by External Pressure
,”
J. Aeronaut. Sci.
,
7
(
2
), pp.
43
50
.
9.
Yan
,
D.
,
Matteo
,
P.
, and
Reis
,
P. M.
,
2020
, “
Buckling of Pressurized Spherical Shells Containing a Through-Thickness Defect
,”
J. Mech. Phys. Solids
,
138
.
10.
Wunderlich
,
W.
, and
Albertin
,
U.
,
2002
, “
Buckling Behaviour of Imperfect Spherical Shells
,”
Int. J. Non. Linear. Mech.
,
37
(
4
), pp.
589
604
.
11.
Hutchinson
,
J. W.
,
2016
, “
Buckling of Spherical Shells Revisited
,”
Proc. R. Soc. A
,
472
(
2195
), p.
20160577
.
12.
Lee
,
A.
,
Lopez Jiménez
,
F.
,
Marthelot
,
J.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2016
, “
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111005
.
13.
Ning
,
X.
, and
Pellegrino
,
S.
,
2018
, “
Searching for Imperfection Insensitive Externally Pressurized Near-Spherical Thin Shells
,”
J. Mech. Phys. Solids
,
120
, pp.
49
67
.
14.
Adorno-Rodriguez
,
R.
, and
Palazotto
,
A. N.
,
2015
, “
Nonlinear Structural Analysis of an Icosahedron Under an Internal Vacuum
,”
J. Aircr.
,
52
(
3
), pp.
878
883
.
15.
Just
,
L. W.
,
DeLuca
,
A. M.
, and
Palazotto
,
A. N.
,
2016
, “
Nonlinear Dynamic Analysis of an Icosahedron Frame Which Exhibits Chaotic Behavior
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011006
.
16.
Horton
,
J. W.
,
2006
, “Layered Shell Vacuum Balloons,” U.S. Patent No. 2006/0038062 A1. filed May 13, 2004 and issued February 23.
17.
Metlen
,
T. T.
,
2013
, “
Design of a Lighter Than air Vehicle That Achieves Positive Buoyancy in air Using a Vacuum
,”
BSc. thesis
, https://scholar.afit.edu/etd
18.
Bessa
,
M. A.
,
Bostanabad
,
R.
,
Liu
,
Z.
,
Hu
,
A.
,
Apley
,
D. W.
,
Brinson
,
C.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2017
, “
A Framework for Data-Driven Analysis of Materials Under Uncertainty: Countering the Curse of Dimensionality
,”
Comput. Methods Appl. Mech. Eng.
,
320
, pp.
633
667
.
19.
Yvonnet
,
J.
,
Gonzalez
,
D.
, and
He
,
Q.-C.
,
2009
, “
Numerically Explicit Potentials for the Homogenization of Nonlinear Elastic Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
33
), pp.
2723
2737
.
20.
Bazilevs
,
Y.
,
Deng
,
X.
,
Korobenko
,
A.
,
di Scalea
,
L.
,
Todd
,
F.
,
and Taylor
,
M. D.
, and
G
,
S.
,
2015
, “
Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven by Dynamic Sensor Data
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091008
.
21.
Thankachan
,
T.
,
Soorya Prakash
,
K.
, and
Kamarthin
,
M.
,
2018
, “
Optimizing the Tribological Behavior of Hybrid Copper Surface Composites Using Statistical and Machine Learning Techniques
,”
ASME J. Tribol.
,
140
(
3
), p.
031610
.
22.
Khan
,
A.
,
Ko
,
D.-K.
,
Lim
,
S. C.
, and
Kim
,
H. S.
,
2019
, “
Structural Vibration-Based Classification and Prediction of Delamination in Smart Composite Laminates Using Deep Learning Neural Network
,”
Composites, Part B
,
161
, pp.
586
594
.
23.
Wagner
,
H. N. R.
,
Köke
,
H.
,
Dähne
,
S.
,
Niemann
,
S.
,
Hühne
,
C.
, and
Khakimova
,
R.
,
2019
, “
Decision Tree-Based Machine Learning to Optimize the Laminate Stacking of Composite Cylinders for Maximum Buckling Load and Minimum Imperfection Sensitivity
,”
Compos. Struct.
,
220
, pp.
45
63
.
24.
Zhenchao
,
Q.
,
Zhang
,
N.
,
Liu
,
Y.
, and
Chen
,
W.
,
2019
, “
Prediction of Mechanical Properties of Carbon Fiber Based on Cross-Scale FEM and Machine Learning
,”
Compos. Struct.
,
212
, pp.
199
206
.
25.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
New York, NY
, pp.
785
794
.
26.
Ning
,
X.
, and
Pellegrino
,
S.
,
2015
, “
Imperfection-Insensitive Axially Loaded Thin Cylindrical Shells
,”
Int. J. Solids Struct.
,
62
, pp.
39
51
.
27.
Li
,
P.
,
2010
, “
An Empirical Evaluation of Four Algorithms for Multi-Class Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost
,” pp.
1
24
. http://arxiv.org/abs/1001.1020
28.
Nielsen
,
D.
,
2016
, “
Tree Boosting With XGBoost-Why Does XGBoost Win “Every” Machine Learning Competition?
,”
Master’s thesis
, https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2433761
You do not currently have access to this content.