Abstract

As a critical step to integrate micro-nano electronic components on the soft substrate, transfer printing allows the facile fabrication of flexible electronics. The key to a successful transfer printing process is to modulate the interfacial adhesion strength at the stamp/device interface. As an advanced approach, electromagnetic-assisted transfer printing explores a sealed chamber with a magnetic stamp film at the bottom that can be reversibly actuated by the externally applied magnetic field. The deflected magnetic stamp film changes the pressure inside the chamber to modulate the interfacial adhesion at the stamp/device interface. Here, we investigate various design considerations and demonstrate a magnetic stamp film with magnetic NdFeB particles dispersed in a silicone polymer. A theoretical model is first established to study the reversible upward (or downward) deformation of the magnetic stamp film in a positive (or negative) magnetic field. The theoretical model reveals the effects of the mass fraction of the magnetic particles, the thickness of the magnetic film, and the magnetic field intensity on the deformation of the film and the transfer printing process. The theoretically predicted linear relationship between the maximum displacement of the magnetic film and the applied magnetic field is validated by finite element analysisand experimental results.

References

1.
Choi
,
J.
,
Xue
,
Y.
,
Xia
,
W.
,
Ray
,
T. R.
,
Reeder
,
J. T.
,
Bandodkar
,
A. J.
,
Kang
,
D.
,
Xu
,
S.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Soft, Skin-Mounted Microfluidic Systems for Measuring Secretory Fluidic Pressures Generated at the Surface of the Skin by Eccrine Sweat Glands
,”
Lab Chip
,
17
(
15
), pp.
2572
2580
. 10.1039/C7LC00525C
2.
Kaltenbrunner
,
M.
,
Sekitani
,
T.
,
Reeder
,
J.
,
Yokota
,
T.
,
Kuribara
,
K.
,
Tokuhara
,
T.
,
Drack
,
M.
,
Schwödiauer
,
R.
,
Graz
,
I.
,
Bauer-Gogonea
,
S.
,
Bauer
,
S.
, and
Someya
,
T.
,
2013
, “
An Ultra-Lightweight Design for Imperceptible Plastic Electronics
,”
Nature
,
499
(
7459
), pp.
458
463
. 10.1038/nature12314
3.
Gao
,
W.
,
Emaminejad
,
S.
,
Nyein
,
H. Y. Y.
,
Challa
,
S.
,
Chen
,
K.
,
Peck
,
A.
,
Fahad
,
H. M.
,
Ota
,
H.
,
Shiraki
,
H.
,
Kiriya
,
D.
,
Lien
,
D. H.
,
Brooks
,
G. A.
,
Davis
,
R. W.
, and
Javey
,
A.
,
2016
, “
Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis
,”
Nature
,
529
(
7587
), pp.
509
514
. 10.1038/nature16521
4.
Zhou
,
H.
,
Zhang
,
Y.
,
Qiu
,
Y.
,
Wu
,
H.
,
Qin
,
W.
,
Liao
,
Y.
,
Yu
,
Q.
, and
Cheng
,
H.
,
2020
, “
Stretchable Piezoelectric Energy Harvesters and Self-Powered Sensors for Wearable and Implantable Devices
,”
Biosens. Bioelectron.
,
168
, p.
112569
. 10.1016/j.bios.2020.112569
5.
Chen
,
W. T.
,
Ren
,
X. S.
,
Wang
,
Q. T.
, and
Wu
,
J.
,
2019
, “
Tunable Contact of Epidermal Electronics With Skin Based on Ionic Polymer-Metal Composite Material
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061004
. 10.1115/1.4042895
6.
Liu
,
G. D.
,
Sun
,
L. J.
, and
Su
,
Y. W.
,
2020
, “
Scaling Effects in the Mechanical System of the Flexible Epidermal Electronics and the Human Skin
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081007
. https://doi.org/10.1115/1.4047039
7.
Zhang
,
L.
,
Ji
,
H.
,
Huang
,
H.
,
Yi
,
N.
,
Shi
,
X.
,
Xie
,
S.
,
Li
,
Y.
,
Ye
,
Z.
,
Feng
,
P.
,
Lin
,
T.
,
Liu
,
X.
,
Leng
,
X.
,
Li
,
M.
,
Zhang
,
J.
,
Ma
,
X.
,
He
,
P.
,
Zhao
,
W.
, and
Cheng
,
H.
,
2020
, “
Wearable Circuits Sintered at Room Temperature Directly on the Skin Surface for Health Monitoring
,”
ACS Appl. Mater. Interfaces
,
12
(
40
), pp.
45504
45515
. 10.1021/acsami.0c11479
8.
Zhang
,
Y.
,
Chen
,
Y.
,
Huang
,
J.
,
Liu
,
Y.
,
Peng
,
J.
,
Chen
,
S.
,
Song
,
K.
,
Ouyang
,
X.
,
Cheng
,
H.
, and
Wang
,
X.
,
2020
, “
Skin-Interfaced Microfluidic Devices With One-Opening Chambers and Hydrophobic Valves for Sweat Collection and Analysis
,”
Lab Chip
,
20
(
15
), pp.
2635
2645
. 10.1039/D0LC00400F
9.
Yang
,
L.
,
Yi
,
N.
,
Zhu
,
J.
,
Cheng
,
Z.
,
Yin
,
X.
,
Zhang
,
X.
,
Zhu
,
H.
, and
Cheng
,
H.
,
2020
, “
Novel Gas Sensing Platform Based on a Stretchable Laser-Induced Graphene Pattern With Self-Heating Capabilities
,”
J. Mater. Chem. A
,
8
(
14
), pp.
6487
6500
. 10.1039/C9TA07855J
10.
Hwang
,
S.
,
Lee
,
C. H.
,
Cheng
,
H.
,
Jeong
,
J. W.
,
Kang
,
S. K.
,
Kim
,
J. H.
,
Shin
,
J.
,
Yang
,
J.
,
Liu
,
Z.
, and
Ameer
,
G. A.
,
2016
, “
Biodegradable Elastomers and Silicon Nanomembranes/Nanoribbons for Stretchable, Transient Electronics and Biosensors
,”
Nano Lett.
,
15
(
5
), p.
2801
2808
. 10.1021/nl503997m
11.
Hwang
,
S. W.
,
Park
,
G.
,
Cheng
,
H.
,
Song
,
J. K.
,
Kang
,
S. K.
,
Yin
,
L.
,
Kim
,
J. H.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Lee
,
K. M.
, and
Rogers
,
J. A.
,
2014
, “
25th Anniversary Article: Materials for High-Performance Biodegradable Semiconductor Devices
,”
Adv. Mater.
,
26
(
13
), pp.
1992
2000
. 10.1002/adma.201304821
12.
Hwang
,
S. W.
,
Tao
,
H.
,
Kim
,
D.-H.
,
Cheng
,
H.
,
Song
,
J.-K.
,
Rill
,
E.
,
Brenckle
,
M. A.
,
Panilaitis
,
B.
,
Won
,
S. M.
,
Kim
,
Y.-S.
,
Song
,
Y. M.
,
Yu
,
K. J.
,
Ameen
,
A.
,
Li
,
R.
,
Su
,
Y.
,
Yang
,
M.
,
Kaplan
,
D. L.
,
Zakin
,
M. R.
,
Slepian
,
M. J.
,
Huang
,
Y.
,
Omenetto
,
F. G.
, and
Rogers
,
J. A.
,
2012
, “
A Physically Transient Form of Silicon Electronics
,”
Science
,
337
(
6102
), pp.
1640
1644
. 10.1126/science.1226325
13.
Yi
,
N.
,
Cui
,
H.
,
Zhang
,
L. G.
, and
Cheng
,
H.
,
2019
, “
Integration of Biological Systems with Electronic-Mechanical Assemblies
,”
Acta Biomater.
,
95
, pp.
91
111
. 10.1016/j.actbio.2019.04.032
14.
Liao
,
C.
,
Zhang
,
M.
,
Yao
,
M. Y.
,
Hua
,
T.
,
Li
,
L.
, and
Yan
,
F.
,
2015
, “
Flexible Organic Electronics in Biology: Materials and Devices
,”
Adv Mater
,
27
(
46
), pp.
7493
7527
. 10.1002/adma.201402625
15.
Gao
,
Y.
, and
Cheng
,
H.
,
2017
, “
Assembly of Heterogeneous Materials for Biology and Electronics: From Bio-Inspiration to Bio-Integration
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020801
. 10.1115/1.4036238
16.
Samineni
,
V. K.
,
Yoon
,
J.
,
Crawford
,
K. E.
,
Jeong
,
Y. R.
,
McKenzie
,
K. C.
,
Shin
,
G.
,
Xie
,
Z.
,
Sundaram
,
S. S.
,
Li
,
Y.
,
Yang
,
M. Y.
,
Kim
,
J.
,
Wu
,
D.
,
Xue
,
Y.
,
Feng
,
X.
,
Huang
,
Y.
,
Mickle
,
A. D.
,
Banks
,
A.
,
Ha
,
J. S.
,
Golden
,
J. P.
,
Rogers
,
J. A.
, and
Gereau
,
R. W.
,
2017
, “
Fully Implantable, Battery-Free Wireless Optoelectronic Devices for Spinal Optogenetics
,”
Pain
,
158
(
11
), pp.
2108
2116
. 10.1097/j.pain.0000000000000968
17.
Zhang
,
C.
,
Peng
,
Z.
,
Huang
,
C.
,
Zhang
,
B.
,
Xing
,
C.
,
Chen
,
H.
,
Cheng
,
H.
,
Wang
,
J.
, and
Tang
,
S.
,
2021
, “
High-Energy All-in-One Stretchable Micro-Supercapacitor Arrays Based on 3D Laser-Induced Graphene Foams Decorated With Mesoporous ZnP Nanosheets for Self-Powered Stretchable Systems
,”
Nano Energy
,
81
, p.
105609
. 10.1016/j.nanoen.2020.105609
18.
Carlson
,
A.
,
Bowen
,
A. M.
,
Huang
,
Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2012
, “
Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication
,”
Adv. Mater.
,
24
(
39
), pp.
5284
5318
. 10.1002/adma.201201386
19.
Feng
,
X.
,
Lu
,
B. W.
,
Wu
,
J.
,
Lin
,
Y.
,
Song
,
J. Z.
,
Song
,
G. F.
, and
Huang
,
Y. G.
,
2014
, “
Review on Stretchable and Fexible Inorganic Electronics
,”
Acta Phys. Sin.
,
63
(
1
), p.
14201
. 10.7498/aps.63.014201
20.
Zhou
,
H.
,
Qin
,
W.
,
Yu
,
Q.
,
Cheng
,
H.
,
Yu
,
X.
, and
Wu
,
H.
,
2019
, “
Transfer Printing and Its Applications in Flexible Electronic Devices
,”
Nanomaterials
,
9
(
2
), p.
283
. 10.3390/nano9020283
21.
Meitl
,
M. A.
,
Zhu
,
Z.-T.
,
Kumar
,
V.
,
Lee
,
K. J.
,
Feng
,
X.
,
Huang
,
Y. Y.
,
Adesida
,
I.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2005
, “
Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp
,”
Nat. Mater.
,
5
(
1
), pp.
33
38
. 10.1038/nmat1532
22.
Yin
,
H.
,
Haicheng
,
L. I.
,
Ying
,
C.
,
Cai
,
S. S.
,
Zhang
,
Y. C.
,
Bingwei
,
L. U.
, and
Xue
,
F.
,
2016
, “
Stretchable and Flexible Photonics/Electronics Devices and Transfer Printing
,”
Sci. Sin.
,
46
(
4
), p.
044607
. 10.1360/sspma2016-00004
23.
Kim
,
S.
,
Wu
,
J.
,
Carlson
,
A.
,
Jin
,
S. H.
,
Kovalsky
,
A.
,
Glass
,
P.
,
Liu
,
Z.
,
Ahmed
,
N.
,
Elgan
,
S. L.
,
Chen
,
W.
,
Ferreira
,
P. M.
,
Sitti
,
M.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2010
, “
Microstructured Elastomeric Surfaces With Reversible Adhesion and Examples of Their Use in Deterministic Assembly by Transfer Printing
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
40
), pp.
17095
17100
. 10.1073/pnas.1005828107
24.
Wu
,
J.
,
Kim
,
S.
,
Chen
,
W.
,
Carlson
,
A.
,
Hwang
,
K.-C.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2011
, “
Mechanics of Reversible Adhesion
,”
Soft Matter
,
7
(
18
), pp.
8657
8662
. 10.1039/c1sm05915g
25.
Jeong
,
J.
,
Kim
,
J.
,
Song
,
K.
,
Autumn
,
K.
, and
Lee
,
J.
,
2014
, “
Geckoprinting: Assembly of Microelectronic Devices on Unconventional Surfaces by Transfer Printing with Isolated Gecko Setal Arrays
,”
J. R. Soc. Interface
,
11
(
99
), p.
20140627
. 10.1098/rsif.2014.0627
26.
Chen
,
H.
,
Feng
,
X.
,
Huang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2013
, “
Experiments and Viscoelastic Analysis of Peel Test With Patterned Strips for Applications to Transfer Printing
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1737
1752
. 10.1016/j.jmps.2013.04.001
27.
Yoo
,
B.
,
Cho
,
S.
,
Seo
,
S.
, and
Lee
,
J.
,
2014
, “
Elastomeric Angled Microflaps With Reversible Adhesion for Transfer-Printing Semiconductor Membranes Onto dry Surfaces
,”
ACS Appl. Mater. Interfaces
,
6
(
21
), pp.
19247
19253
. 10.1021/am505286b
28.
Chen
,
H.
,
Feng
,
X.
, and
Chen
,
Y.
,
2013
, “
Directionally Controlled Transfer Printing Using Micropatterned Stamps
,”
Appl. Phys. Lett.
,
103
(
15
), pp.
1
4
. 10.1063/1.4824976
29.
Carlson
,
A.
,
Kim-Lee
,
H.-J.
,
Wu
,
J.
,
Elvikis
,
P.
,
Cheng
,
H.
,
Kovalsky
,
A.
,
Elgan
,
S.
,
Yu
,
Q.
,
Ferreira
,
P. M.
,
Huang
,
Y.
,
Turner
,
K. T.
, and
Rogers
,
J. A.
,
2011
, “
Shear-Enhanced Adhesiveless Transfer Printing for Use in Deterministic Materials Assembly
,”
Appl. Phys. Lett.
,
98
(
26
), p.
264104
. 10.1063/1.3605558
30.
Carlson
,
A.
,
Wang
,
S.
,
Elvikis
,
P.
,
Ferreira
,
P. M.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Active, Programmable Elastomeric Surfaces With Tunable Adhesion for Deterministic Assembly by Transfer Printing
,”
Adv. Funct. Mater.
,
22
(
21
), pp.
4476
4484
. 10.1002/adfm.201201023
31.
Cheng
,
H.
,
Wu
,
J.
,
Yu
,
Q.
,
Kim-Lee
,
H.-J.
,
Carlson
,
A.
,
Turner
,
K. T.
,
Hwang
,
K.-C.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
An Analytical Model for Shear-Enhanced Adhesiveless Transfer Printing
,”
Mech. Res. Commun.
,
43
, pp.
46
49
. 10.1016/j.mechrescom.2012.02.011
32.
Cho
,
S.
,
Kim
,
N.
,
Song
,
K.
, and
Lee
,
J.
,
2016
, “
Adhesiveless Transfer Printing of Ultrathin Microscale Semiconductor Materials by Controlling the Bending Radius of an Elastomeric Stamp
,”
Langmuir
,
32
(
31
), pp.
7951
7957
. 10.1021/acs.langmuir.6b01880
33.
Al-okaily
,
A. M.
, and
Ferreira
,
P. M.
,
2015
, “
Multi-Physics Modeling for Laser Micro-Transfer Printing Delamination
,”
J. Manuf. Processes
,
20
, pp.
414
424
. 10.1016/j.jmapro.2014.07.006
34.
Gao
,
Y.
,
Li
,
Y.
,
Li
,
R.
, and
Song
,
J.
,
2017
, “
An Accurate Thermomechanical Model for Laser-Driven Microtransfer Printing
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
064501
. 10.1115/1.4036257
35.
Li
,
R.
,
Li
,
Y.
,
,
C.
,
Song
,
J.
,
Saeidpouraza
,
R.
,
Fang
,
B.
,
Zhong
,
Y.
,
Ferreira
,
P. M.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2012
, “
Thermo-Mechanical Modeling of Laser-Driven Non-Contact Transfer Printing: Two-Dimensional Analysis
,”
Soft Matter
,
8
(
27
), pp.
7122
7127
. 10.1039/c2sm25339a
36.
Li
,
R.
,
Li
,
Y.
,
,
C.
,
Song
,
J.
,
Saeidpourazar
,
R.
,
Fang
,
B.
,
Zhong
,
Y.
,
Ferreira
,
P. M.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2012
, “
Axisymmetric Thermo-Mechanical Analysis of Laser-Driven Non-Contact Transfer Printing
,”
Int. J. Fract.
,
176
(
2
), pp.
189
194
. 10.1007/s10704-012-9744-9
37.
Saeidpourazar
,
R.
,
Li
,
R.
,
Li
,
Y.
,
Sangid
,
M. D.
,
Lu
,
C.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Ferreira
,
P. M.
,
2012
, “
Laser-Driven Micro Transfer Placement of Prefabricated Microstructures
,”
J. Microelectromech. Syst.
,
21
(
5
), pp.
1049
1058
. 10.1109/JMEMS.2012.2203097
38.
Saeidpourazar
,
R.
,
Sangid
,
M. D.
,
Rogers
,
J. A.
, and
Ferreira
,
P. M.
,
2012
, “
A Prototype Printer for Laser Driven Micro-Transfer Printing
,”
J. Manuf. Processes
,
14
(
4
), pp.
416
424
. 10.1016/j.jmapro.2012.09.014
39.
Eisenhaure
,
J. D.
,
Rhee
,
S. I.
,
Al-Okaily
,
A. M.
,
Carlson
,
A.
,
Ferreira
,
P. M.
, and
Seok
,
K.
,
2014
, “
The Use of Shape Memory Polymers for Microassembly by Transfer Printing
,”
J. Microelectromech. Syst.
,
23
(
5
), pp.
1012
1014
. 10.1109/JMEMS.2014.2345274
40.
Eisenhaure
,
J. D.
,
Xie
,
T.
,
Varghese
,
S.
, and
Kim
,
S.
,
2013
, “
Microstructured Shape Memory Polymer Surfaces With Reversible Dry Adhesion
,”
ACS Appl. Mater. Interfaces
,
5
(
16
), pp.
7714
7717
. 10.1021/am402479f
41.
Xue
,
Y.
,
Zhang
,
Y.
,
Feng
,
X.
,
Kim
,
S.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2015
, “
A Theoretical Model of Reversible Adhesion in Shape Memory Surface Relief Structures and Its Application in Transfer Printing
,”
J. Mech. Phys. Solids
,
77
, pp.
27
42
. 10.1016/j.jmps.2015.01.001
42.
Lee
,
C. H.
,
Kim
,
D. R.
, and
Zheng
,
X.
,
2011
, “
Fabrication of Nanowire Electronics on Nonconventional Substrates by Water-Assisted Transfer Printing Method
,”
Nano Lett.
,
11
(
8
), pp.
3435
3439
. 10.1021/nl201901z
43.
Yu
,
Q.
,
Chen
,
F.
,
Zhou
,
H.
,
Yu
,
X.
,
Cheng
,
H.
, and
Wu
,
H.
,
2018
, “
Design and Analysis of Magnetic-Assisted Transfer Printing
,”
ASME J. Appl. Mech.
,
85
(
10
), p.
101009
. 10.1115/1.4040599
44.
Yu
,
Q.
,
Chen
,
F.
,
Zhou
,
H.
, and
Yu
,
X.
,
2018
, “
Mechanical Model of Electromagnetic-Assisted Transfer Printing Stamp Containing a Four Prism Cavity
,”
Sci. Sin. Inf.
,
48
(
6
), p.
713
723
. 10.1360/N112018-00019
45.
Yu
,
Q. M.
,
Yu
,
X. D.
,
Zhou
,
H.
,
Chen
,
F. R.
,
Cheng
,
H.
, and
Wu
,
H.
,
2019
, “
Effects of Material Properties and Geometric Parameters on Electromagnetic-Assisted Transfer Printing
,”
J. Phys. D: Appl. Phys.
,
52
(
25
), p.
255302
. 10.1088/1361-6463/ab10b0
46.
Jayaneththi
,
V. R.
,
Aw
,
K. C.
, and
McDaid
,
A. J.
,
2019
, “
Coupled Magneto-Mechanical Modeling of Non-Linear Ferromagnetic Diaphragm Systems
,”
Int. J. Mech. Sci.
,
155
, pp.
360
369
. 10.1016/j.ijmecsci.2019.03.003
47.
Chen
,
W.
, and
Wang
,
L.
,
2020
, “
Theoretical Modeling and Exact Solution for Extreme Bending Deformation of Hard-Magnetic Soft Beams
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
041002
. 10.1115/1.4045716
48.
Zhao
,
R.
,
Kim
,
Y.
,
Chester
,
S. A.
,
Sharma
,
P.
, and
Zhao
,
X.
,
2019
, “
Mechanics of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
244
263
. 10.1016/j.jmps.2018.10.008
49.
Hu
,
W.
,
Lum
,
G. Z.
,
Mastrangeli
,
M.
, and
Sitti
,
M.
,
2018
, “
Small-Scale Soft-Bodied Robot With Multimodal Locomotion
,”
Nature
,
554
(
7690
), pp.
81
85
. 10.1038/nature25443
50.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
. 10.1038/s41586-018-0185-0
51.
Fuhrer
,
R.
,
Schumacher
,
C. M.
,
Zeltner
,
M.
, and
Stark
,
W. J.
,
2013
, “
Soft Iron/Silicon Composite Tubes for Magnetic Peristaltic Pumping: Frequency-Dependent Pressure and Volume Flow
,”
Adv. Funct. Mater.
,
23
(
31
), pp.
3845
3849
. 10.1002/adfm.201203572
52.
Pirmoradi
,
F. N.
,
Jackson
,
J. K.
,
Burt
,
H. M.
, and
Chiao
,
M.
,
2011
, “
A Magnetically Controlled MEMS Device for Drug Delivery: Design, Fabrication, and Testing
,”
Lab Chip
,
11
(
18
), pp.
3072
3080
. 10.1039/c1lc20438f
53.
Pirmoradi
,
F.
,
Cheng
,
L.
, and
Chiao
,
M.
,
2010
, “
A Magnetic Poly(Dimethylesiloxane) Composite Membrane Incorporated With Uniformly Dispersed, Coated Iron Oxide Nanoparticles
,”
J. Micromech. Microeng.
,
20
(
1
), p.
015032
. 10.1088/0960-1317/20/1/015032
54.
Lum
,
G. Z.
,
Ye
,
Z.
,
Dong
,
X.
,
Marvi
,
H.
,
Erin
,
O.
,
Hu
,
W.
, and
Sitti
,
M.
,
2016
, “
Shape-Programmable Magnetic Soft Matter
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
41
), pp.
E6007
E6015
. 10.1073/pnas.1608193113
55.
Nguyen
,
V. Q.
,
Ahmed
,
A. S.
, and
Ramanujan
,
R. V.
,
2012
, “
Morphing Soft Magnetic Composites
,”
Adv. Mater.
,
24
(
30
), pp.
4041
4054
. 10.1002/adma.201104994
56.
Liu
,
C.
,
2012
,
Foundations of MEMS
, 2nd ed.,
Prentice Hall
,
Upper Saddle River, NJ
, pp.
304
311
.
57.
Case
,
J. C.
,
White
,
E. L.
, and
Kramer
,
R. K.
,
2015
, “
Soft Material Characterization for Robotic Applications
,”
Soft Rob.
,
2
(
2
), pp.
80
87
. 10.1089/soro.2015.0002
58.
Li
,
J.
,
Zhang
,
M.
,
Wang
,
L.
,
Li
,
W.
,
Sheng
,
P.
, and
Wen
,
W.
,
2010
, “
Design and Fabrication of Microfluidic Mixer From Carbonyl Iron–PDMS Composite Membrane
,”
Microfluid. Nanofluid.
,
10
(
4
), pp.
919
925
. 10.1007/s10404-010-0712-2
59.
Abbott
,
J. J.
,
Ergeneman
,
O.
,
Kummer
,
M. P.
,
Hirt
,
A. M.
, and
Nelson
,
B. J.
,
2007
, “
Modeling Magnetic Torque and Force for Controlled Manipulation of Soft-Magnetic Bodies
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1247
1252
. 10.1109/TRO.2007.910775
60.
Huang
,
L. B.
,
Bai
,
G.
,
Wong
,
M. C.
,
Yang
,
Z.
,
Xu
,
W.
, and
Hao
,
J.
,
2016
, “
Magnetic-Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy Into Electricity and Light Emissions
,”
Adv. Mater.
,
28
(
14
), pp.
2843
2843
. 10.1002/adma.201670097
You do not currently have access to this content.