Abstract

Hydrogen-accelerated fatigue crack growth is a most severe manifestation of hydrogen embrittlement. A mechanistic and predictive model is still lacking partly due to the lack of a descriptive constitutive model of the hydrogen/material interaction at the macroscale under cyclic loading. Such a model could be used to assess the nature of the stress and strain fields in the neighborhood of a crack, a development that could potentially lead to the association of these fields with proper macroscopic parameters. Toward this goal, a constitutive model for cyclic response should be capable of capturing hardening or softening under cyclic straining or ratcheting under stress-controlled testing. In this work, we attempt a constitutive description by using data from uniaxial strain-controlled cyclic loading and stress-controlled ratcheting tests with a low carbon steel, Japanese Industrial Standard (JIS) SM490YB, conducted in air and 1 MPa H2 gas environment at room temperature. We explore the Chaboche constitutive model which is a nonlinear kinematic hardening model that was developed as an extension to the Frederick and Armstrong model, and propose an approach to calibrate the parameters involved. From the combined experimental data and the calibrated Chaboche model, we may conclude that hydrogen decreases the yield stress and the amount of cyclic hardening. On the other hand, hydrogen increases ratcheting, the rate of cyclic hardening, and promotes stronger recovery.

References

References
1.
Suresh
,
S.
, and
Ritchie
,
R. O.
,
1982
, “
Mechanistic Dissimilarities Between Environmentally Influenced Fatigue-Crack Propagation at Near-Threshold and Higher Growth Rates in Lower Strength Steels
,”
Met. Sci.
,
16
(
11
), pp.
529
538
. 10.1179/msc.1982.16.11.529
2.
Kameda
,
J.
, and
McMahon
,
C. J. J.
,
1983
, “
Solute Segregation and Hydrogen-Induced Intergranular Fracture in an Alloy Steel
,”
Metall. Trans. A, Phys. Metall. Mater. Sci.
,
14A
(
4
), pp.
903
911
. 10.1007/BF02644295
3.
Wang
,
S.
,
Nagao
,
A.
,
Sofronis
,
P.
, and
Robertson
,
I. M.
,
2019
, “
Assessment of the Impact of Hydrogen on the Stress Developed Ahead of a Fatigue Crack
,”
Acta Mater.
,
174
, pp.
181
188
. 10.1016/j.actamat.2019.05.028
4.
Wang
,
S.
,
Nygren
,
K. E.
,
Nagao
,
A.
,
Sofronis
,
P.
, and
Robertson
,
I. M.
,
2019
, “
On the Failure of Surface Damage to Assess the Hydrogen-Enhanced Deformation Ahead of Crack Tip in a Cyclically Loaded Austenitic Stainless Steel
,”
Scr. Mater.
,
166
, pp.
102
106
. 10.1016/j.scriptamat.2019.03.010
5.
San Marchi
,
C.
,
Somerday
,
B. P.
,
Nibur
,
K. A.
,
Stalheim
,
D. G.
,
Boggess
,
T.
, and
Jansto
,
S.
,
2010
, “Fracture and Fatigue of Commercial Grade Api Pipeline Steels in Gaseous Hydrogen,”
American Society of Mechanical Engineers, Pressure Vessels and Piping Division PVP
,
ASME Press
,
Bellevue, WA
, pp.
939
948
, PVP2010-25825.
6.
Nibur
,
K. A.
,
San Marchi
,
C.
, and
Somerday
,
B. P.
,
2010
, “Fracture and Fatigue Tolerant Steel Pressure Vessels for Gaseous Hydrogen,”
American Society of Mechanical Engineers, Pressure Vessels and Piping Division PVP
,
ASME Press
,
Bellevue, WA
, pp.
1
10
, PVP2010-25827.
7.
San Marchi
,
C.
,
Somerday
,
B. P.
,
Nibur
,
K. A.
,
Stalheim
,
D. G.
,
Boggess
,
T.
, and
Jansto
,
S.
,
2011
, “Fracture Resistance and Fatigue Crack Growth of X80 Pipeline Steel in Gaseous Hydrogen,”
American Society of Mechanical Engineers, Pressure Vessels and Piping Division PVP
,
ASME Press
,
Baltimore, MA
, pp.
841
849
, PVP2011-57684.
8.
Nagao
,
A.
,
Hayashi
,
K.
,
Oi
,
K.
, and
Mitao
,
S.
,
2012
, “
Effect of Uniform Distribution of Fine Cementite on Hydrogen Embrittlement of Low Carbon Martensitic Steel Plates
,”
ISIJ Int.
,
52
(
2
), pp.
213
221
. 10.2355/isijinternational.52.213
9.
Briottet
,
L.
,
Moro
,
I.
, and
Lemoine
,
P.
,
2012
, “
Quantifying the Hydrogen Embrittlement of Pipeline Steels for Safety Considerations
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17616
17623
. 10.1016/j.ijhydene.2012.05.143
10.
Michler
,
T.
,
Naumann
,
J.
,
Weber
,
S.
,
Martin
,
M.
, and
Pargeter
,
R.
,
2013
, “
S-N Fatigue Properties of a Stable High-Aluminum Austenitic Stainless Steel for Hydrogen Applications
,”
Int. J. Hydrogen Energy
,
38
(
23
), pp.
9935
9941
. 10.1016/j.ijhydene.2013.05.145
11.
Somerday
,
B. P.
,
Sofronis
,
P.
,
Nibur
,
K. A.
,
San Marchi
,
C.
, and
Kirchheim
,
R.
,
2013
, “
Elucidating the Variables Affecting Accelerated Fatigue Crack Growth of Steels in Hydrogen Gas With Low Oxygen Concentrations
,”
Acta Mater.
,
61
(
16
), pp.
6153
6170
. 10.1016/j.actamat.2013.07.001
12.
Shinko
,
T.
,
Hénaff
,
G.
,
Halm
,
D.
,
Benoit
,
G.
,
Bilotta
,
G.
, and
Arzaghi
,
M.
,
2019
, “
Hydrogen-Affected Fatigue Crack Propagation at Various Loading Frequencies and Gaseous Hydrogen Pressures in Commercially Pure Iron
,”
Int. J. Fatigue
,
121
, pp.
197
207
. 10.1016/j.ijfatigue.2018.12.009
13.
Sofronis
,
P.
, and
McMeeking
,
R. M.
,
1989
, “
Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip
,”
J. Mech. Phys. Solids
,
37
(
3
), pp.
317
350
. 10.1016/0022-5096(89)90002-1
14.
Sofronis
,
P.
,
Liang
,
Y.
, and
Aravas
,
N.
,
2001
, “
Hydrogen Induced Shear Localization of the Plastic Flow in Metals and Alloys
,”
Eur. J. Mech. A/Solids
,
20
(
6
), pp.
857
872
. 10.1016/S0997-7538(01)01179-2
15.
Martin
,
M. L.
,
Somerday
,
B. P.
,
Ritchie
,
R. O.
,
Sofronis
,
P.
, and
Robertson
,
I. M.
,
2012
, “
Hydrogen-Induced Intergranular Failure in Nickel Revisited
,”
Acta Mater.
,
60
(
6–7
), pp.
2739
2745
. 10.1016/j.actamat.2012.01.040
16.
Dadfarnia
,
M.
,
Martin
,
M. L.
,
Nagao
,
A.
,
Sofronis
,
P.
, and
Robertson
,
I. M.
,
2015
, “
Modeling Hydrogen Transport by Dislocations
,”
J. Mech. Phys. Solids
,
78
, pp.
511
525
. 10.1016/j.jmps.2015.03.002
17.
Robertson
,
I. M.
,
Sofronis
,
P.
,
Nagao
,
A.
,
Martin
,
M. L.
,
Wang
,
S.
,
Gross
,
D. W.
, and
Nygren
,
K. E.
,
2015
, “
Hydrogen Embrittlement Understood
,”
Metall. Mater. Trans. A
,
46
(
6
), pp.
2323
2341
. 10.1007/s11661-015-2836-1
18.
Martin
,
M. L.
,
Dadfarnia
,
M.
,
Nagao
,
A.
,
Wang
,
S.
, and
Sofronis
,
P.
,
2019
, “
Enumeration of the Hydrogen-Enhanced Localized Plasticity Mechanism for Hydrogen Embrittlement in Structural Materials
,”
Acta Mater.
,
165
, pp.
734
750
. 10.1016/j.actamat.2018.12.014
19.
Nagao
,
A.
,
Dadfarnia
,
M.
,
Somerday
,
B. P.
,
Sofronis
,
P.
, and
Ritchie
,
R. O.
,
2018
, “
Hydrogen-Enhanced-Plasticity Mediated Decohesion for Hydrogen-Induced Intergranular and ‘Quasi-Cleavage’ Fracture of Lath Martensitic Steels
,”
J. Mech. Phys. Solids
,
112
, pp.
403
430
. 10.1016/j.jmps.2017.12.016
20.
Cialone
,
H. J.
, and
Holbrook
,
J. H.
,
1988
, “Sensitivity of Steels to Degradation in Gaseous Hydrogen,”
Hydrogen Embrittlement: Prevention and Control, ASTM STP 962
,
L.
Raymond
, ed.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
134
152
.
21.
Hosseini
,
Z. S.
,
Dadfarnia
,
M.
,
Nibur
,
K. A.
,
Somerday
,
B. P.
,
Gangloff
,
R. P.
, and
Sofronis
,
P.
,
2017
, “Trapping Against Hydrogen Embrittlement,”
Proceeding of the 2016 Hydrogen Conference, Material Performance in Hydrogen Environment
,
B. P.
Somerday
, and
P.
Sofronis
, eds.,
ASME Press
,
New York
, pp.
71
80
.
22.
Uyama
,
H.
,
Nakashima
,
M.
,
Morishige
,
K.
,
Mine
,
Y.
, and
Murakami
,
Y.
,
2006
, “
Effects of Hydrogen Charge on Microscopic Fatigue Behaviour of Annealed Carbon Steels
,”
Fatigue Fract. Eng. Mater. Struct.
,
29
(
12
), pp.
1066
1074
. 10.1111/j.1460-2695.2006.01069.x
23.
Tsuchida
,
Y.
,
Watanabe
,
T.
,
Kato
,
T.
, and
Seto
,
T.
,
2010
, “
Effect of Hydrogen Absorption on Strain-Induced Low-Cycle Fatigue of Low Carbon Steel
,”
Procedia Eng.
,
2
(
1
), pp.
555
561
. 10.1016/j.proeng.2010.03.060
24.
Schauer
,
G.
,
Roetting
,
J.
,
Hahn
,
M.
,
Schreijaeg
,
S.
,
Bacher-Höchst
,
M.
, and
Weihe
,
S.
,
2015
, “
Influence of Gaseous Hydrogen on Fatigue Behavior of Ferritic Stainless Steel—A Fatigue-Life Estimation
,”
Procedia Eng.
,
133
, pp.
362
378
. 10.1016/j.proeng.2015.12.669
25.
Martin
,
M. L.
,
Looney
,
C.
,
Bradley
,
P.
,
Lauria
,
D.
,
Amaro
,
R.
, and
Slifka
,
A. J.
,
2019
, “
Unification of Hydrogen-Enhanced Damage Understanding Through Strain-Life Experiments for Modeling
,”
Eng. Fract. Mech.
,
216
, p.
106504
. 10.1016/j.engfracmech.2019.106504
26.
Das
,
B.
, and
Singh
,
A.
,
2020
, “
Influence of Hydrogen on the Low Cycle Fatigue Performance of P91 Steel
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7151
7168
. 10.1016/j.ijhydene.2019.12.154
27.
Mansilla
,
G.
,
Hereñú
,
S.
, and
Brandaleze
,
E.
,
2014
, “
Hydrogen Effects on Low Cycle Fatigue of High Strength Steels
,”
Mater. Sci. Technol.
,
30
(
4
), pp.
501
505
. 10.1179/1743284713Y.0000000328
28.
Morrow
,
J.
,
1965
, “Cyclic Plastic Strain Energy in Fatigue of Metals,”
Internal Friction, Damping, and Cyclic Plasticity, ASTM STP 378
,
B
Lazan
, ed.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
45
87
.
29.
Hosseini
,
Z. S.
,
Dadfarnia
,
M.
,
Somerday
,
B. P.
,
Sofronis
,
P.
, and
Ritchie
,
R. O.
,
2018
, “
On the Theoretical Modeling of Fatigue Crack Growth
,”
J. Mech. Phys. Solids
,
121
, pp.
341
362
. 10.1016/j.jmps.2018.07.026
30.
Drucker
,
D. C.
, and
Rice
,
J. R.
,
1970
, “
Plastic Deformation in Brittle Ductile Fracture
,”
Eng. Fract. Mech.
,
1
(
4
), pp.
577
602
. 10.1016/0013-7944(70)90001-9
31.
Jhansale
,
H. R.
,
1975
, “
A New Parameter for the Hysteretic Stress-Strain Behaviour of Metals
,”
ASME J. Eng. Mater. Technol.
,
97
(
1
), pp.
33
38
. 10.1115/1.3443257
32.
Chaboche
,
J. L.
, and
Nouailhas
,
D.
,
1989
, “
Constitutive Modeling of Ratchetting Effects_Part I: Experimental Facts And Properties of The Classical Models
,”
ASME J. Eng. Mater. Technol.
,
111
(
4
), pp.
384
392
. 10.1115/1.3226484
33.
Chaboche
,
J. L.
, and
Nouailhas
,
D.
,
1989
, “
Constitutive Modeling of Ratchetting Effects-Part II: Possibilities of Some Additional Kinematic Rules
,”
ASME J. Eng. Mater. Technol.
,
111
(
4
), pp.
409
416
. 10.1115/1.3226488
34.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauscinger Effect
,”
CEGB Rep. No. RD/B/N 731
.
35.
Chaboche
,
J. L.
,
Van
,
K. D.
, and
Cordier
,
G.
,
1979
, “
Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel
,”
Transactions of the International Conference on Structural Mechanics in Reactor Technology, Division L
,
Berlin
,
Aug. 9–21
, p. L11/3.
36.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
. 10.1016/0749-6419(86)90010-0
37.
Bower
,
A. F.
,
1989
, “
Cyclic Hardening Properties of Hard-Drawn Copper and Rail Steel
,”
J. Mech. Phys. Solids
,
37
(
4
), pp.
455
470
. 10.1016/0022-5096(89)90024-0
38.
Chaboche
,
J. L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effects
,”
Int. J. Plast.
,
7
(
7
), pp.
661
678
. 10.1016/0749-6419(91)90050-9
39.
Ohno
,
N.
, and
Wang
,
J. D.
,
1991
, “
Nonlinear Kinematic Hardening Rule: Proposition and Application to Ratchetting Problems
,”
Transactions of the 11th International Conference on Structural Mechanics in Reactor Technology
,
Tokyo, Japan
,
Aug. 18–23
, pp.
481
486
.
40.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules with Critical State of Dynamic Recovery, Part I: Formulation and Basic Features for Ratchetting Behavior
,”
Int. J. Plast.
,
9
(
3
), pp.
375
390
. 10.1016/0749-6419(93)90042-O
41.
Bari
,
S.
, and
Hassan
,
T.
,
2000
, “
Anatomy of Coupled Constitutive Models for Ratcheting Simulation
,”
Int. J. Plast.
,
16
(
3
), pp.
381
409
. 10.1016/S0749-6419(99)00059-5
42.
Nagao
,
A.
,
2019
, “
Experimental and Simulational Study of Hydrogen Uptake in Low-Alloy Steels Exposed to High-Pressure H2 Gas
,”
Hydrogenius, I2CNER, and HydroMate Joint Research Symposium
,
Fukuoka, Japan
,
Jan. 30
, pp.
61
72
.
43.
Tsong-Pyng
,
P.
, and
Altstetter
,
C. J.
,
1986
, “
Effects of Deformation on Hydrogen Permeation in Austenitic Stainless Steels
,”
Acta Metall.
,
34
(
9
), pp.
1771
1781
. 10.1016/0001-6160(86)90123-9
44.
Crank
,
J.
,
1975
,
The Mathematics of Diffusion
,
Oxford University Press
,
Bristol, UK
.
45.
Ramunni
,
V. P.
,
Coelho
,
T. D. P.
, and
de Miranda
,
P. E. V.
,
2006
, “
Interaction of Hydrogen With the Microstructure of Low-Carbon Steel
,”
Mater. Sci. Eng. A
,
435–436
, pp.
504
514
. 10.1016/j.msea.2006.07.089
46.
Takai
,
K.
, and
Watanuki
,
R.
,
2003
, “
Hydrogen in Trapping States Innocuous to Environmental Degradation of High-Strength Steels
,”
Iron Steel Inst. Japan
,
43
(
4
), pp.
520
526
. 10.2355/isijinternational.43.520
47.
Lee
,
E. H.
,
1981
, “
Some Comments on Elastic-Plastic Analysis
,”
Int. J. Solids Struct.
,
17
(
9
), pp.
859
872
. 10.1016/0020-7683(81)90101-3
48.
Kang
,
G.
, and
Liu
,
Y.
,
2008
, “
Uniaxial Ratchetting and Low-Cycle Fatigue Failure of the Steel With Cyclic Stabilizing or Softening Feature
,”
Mater. Sci. Eng. A
,
472
(
1–2
), pp.
258
268
. 10.1016/j.msea.2007.03.029
49.
Gorash
,
Y.
, and
Mackenzie
,
D.
,
2017
, “
On Cyclic Yield Strength in Definition of Limits for Characterisation of Fatigue and Creep Behaviour
,”
Open Eng.
,
7
(
1
), pp.
126
140
. 10.1515/eng-2017-0019
You do not currently have access to this content.