Abstract

Traditional methods to measure blood pressure are intermittent and may fail to detect the critical blood pressure fluctuations. Continuous blood pressure monitoring offers important clinical value in predicting cardiovascular diseases. Invasive (i.e., artery cannulation) and noninvasive approaches (e.g., volume clamping, pressure sensor, ultrasound, and optical methods) have limitations that prevent their generalized use outside of controlled settings, and few account properly for changes in the properties of the arteries (e.g., after drug administration, aging). This article proposes a method that combines a skin-interfaced pressure sensor with a sensor of pulse wave velocity, to continuously, noninvasively, and accurately measure the blood pressure, in ways that eliminate drifts and other artifacts that can prevent accurate, longitudinal monitoring. A scaling law is established to show that, for a linearly proportional relationship between the blood pressure and sensor pressure, the coefficient of proportionality depends on the elastic moduli Eartery and Etissue of the artery and tissue, respectively, and the artery thickness hartery and radius Rartery via a single, dimensionless combination, Earteryhartery/(EtissueRartery), i.e., the normalized artery stiffness. This scheme determines the blood pressure in a manner that explicitly accounts for changes in the artery elastic modulus and thickness (e.g., due to the administration of drugs, aging).

References

1.
Bijker
,
J. B.
,
Persoon
,
S.
,
Peelen
,
L. M.
,
Moons
,
K. G.
,
Kalkman
,
C. J.
,
Kappelle
,
L. J.
, and
Van Klei
,
W. A.
,
2012
, “
Intraoperative Hypotension and Perioperative Ischemic Stroke After General Surgery: A Nested Case-Control Study
,”
Anesthesiology
,
116
(
3
), pp.
658
664
.
2.
van Waes
,
J. A.
,
Van Klei
,
W. A.
,
Wijeysundera
,
D. N.
,
Van Wolfswinkel
,
L.
,
Lindsay
,
T. F.
, and
Beattie
,
W. S.
,
2016
, “
Association Between Intraoperative Hypotension and Myocardial Injury After Vascular Surgery
,”
Anesthesiology
,
124
(
1
), pp.
35
44
.
3.
Walsh
,
M.
,
Devereaux
,
P. J.
,
Garg
,
A. X.
,
Kurz
,
A.
,
Turan
,
A.
,
Rodseth
,
R. N.
,
Cywinski
,
J.
,
Thabane
,
L.
, and
Sessler
,
D. I.
,
2013
, “
Relationship Between Intraoperative Mean Arterial Pressure and Clinical Outcomes After Noncardiac Surgery: Toward an Empirical Definition of Hypotension
,”
Anesthesiology
,
119
(
3
), pp.
507
515
.
4.
Saugel
,
B.
,
Dueck
,
R.
, and
Wagner
,
J. Y.
,
2014
, “
Measurement of Blood Pressure
,”
Best Pract. Res. Clin. Anaesthesiol.
,
28
(
4
), pp.
309
322
.
5.
Scheer
,
B. V.
,
Perel
,
A.
, and
Pfeiffer
,
U. J.
,
2002
, “
Clinical Review: Complications and Risk Factors of Peripheral Arterial Catheters Used for Haemodynamic Monitoring in Anaesthesia and Intensive Care Medicine
,”
Crit. Care
,
6
(
3
), pp.
1
7
.
6.
Meidert
,
A. S.
, and
Saugel
,
B. J.
,
2018
, “
Techniques for Non-Invasive Monitoring of Arterial Blood Pressure
,”
Front. Med.
,
4
, p.
231
.
7.
Liu
,
S.
, and
Wan
,
K.
,
2019
, “
A Preliminary Two-Dimensional Palpation Mechanics for Detecting a Hard Inclusion by Indentation of a Soft Matrix Under Large Strain
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051009
.
8.
Bur
,
A.
,
Hirschl
,
M. M.
,
Herkner
,
H.
,
Oschatz
,
E.
,
Kofler
,
J.
,
Woisetschläger
,
C.
, and
Laggner
,
A. N.
,
2000
, “
Accuracy of Oscillometric Blood Pressure Measurement According to the Relation Between Cuff Size and Upper-Arm Circumference in Critically Ill Patients
,”
Crit. Care Med.
,
28
(
2
), pp.
371
376
.
9.
Pickering
,
T. G.
,
Hall
,
J. E.
,
Appel
,
L. J.
,
Falkner
,
B. E.
,
Graves
,
J.
,
Hill
,
M. N.
,
Jones
,
D. W.
,
Kurtz
,
T.
,
Sheps
,
S. G.
, and
Roccella
,
E. J.
,
2005
, “
Recommendations for Blood Pressure Measurement in Humans and Experimental Animals: Part 1: Blood Pressure Measurement in Humans: A Statement for Professionals From the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research
,”
Hypertension
,
45
(
1
), pp.
142
161
.
10.
Penaz
,
J.
,
Voigt
,
A.
, and
Teichmann
,
W.
,
1976
, “
Contribution to the Continuous Indirect Blood Pressure Measurement
,”
Z. Gesamte Inn. Med.
,
31
(
24
), pp.
1030
1033
.
11.
Wagner
,
J. Y.
,
Grond
,
J.
,
Fortin
,
J.
,
Negulescu
,
I.
,
Schöfthaler
,
M.
, and
Saugel
,
B.
,
2016
, “
Continuous Noninvasive Cardiac Output Determination Using the CNAP System: Evaluation of a Cardiac Output Algorithm for the Analysis of Volume Clamp Method-Derived Pulse Contour
,”
J. Clin. Monit. Comput.
,
30
(
4
), pp.
487
493
.
12.
Pressman
,
G. L.
, and
Newgard
,
P. M.
,
1963
, “
A Transducer for the Continuous External Measurement of Arterial Blood Pressure
,”
IEEE Trans. Biomed. Circuits Syst.
,
10
(
2
), pp.
73
81
.
13.
Dueck
,
R.
,
Goedje
,
O.
, and
Clopton
,
P.
,
2012
, “
Noninvasive Continuous Beat-to-Beat Radial Artery Pressure via TL-200 Applanation Tonometry
,”
J. Clin. Monit. Comput.
,
26
(
2
), pp.
75
83
.
14.
Schwartz
,
G.
,
Tee
,
B. C.-K.
,
Mei
,
J.
,
Appleton
,
A. L.
,
Kim
,
D. H.
,
Wang
,
H.
, and
Bao
,
Z.
,
2013
, “
Flexible Polymer Transistors With High Pressure Sensitivity for Application in Electronic Skin and Health Monitoring
,”
Nat. Commun.
,
4
(
1
), pp.
1
8
.
15.
Dagdeviren
,
C.
,
Su
,
Y.
,
Joe
,
P.
,
Yona
,
R.
,
Liu
,
Y.
,
Kim
,
Y.-S.
,
Huang
,
Y.
,
Damadoran
,
A. R.
,
Xia
,
J.
,
Martin
,
L. W.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2014
, “
Conformable Amplified Lead Zirconate Titanate Sensors With Enhanced Piezoelectric Response for Cutaneous Pressure Monitoring
,”
Nat. Commun.
,
5
(
1
), pp.
1
10
.
16.
Kim
,
J.
,
Chou
,
E. F.
,
Le
,
J.
,
Wong
,
S.
,
Chu
,
M.
, and
Khine
,
M.
,
2019
, “
Soft Wearable Pressure Sensors for Beat-to-Beat Blood Pressure Monitoring
,”
Adv. Healthcare Mater.
,
8
(
13
), p.
1900109
.
17.
Panula
,
T.
,
Koivisto
,
T.
,
Pänkäälä
,
M.
,
Niiranen
,
T.
,
Kantola
,
I.
, and
Kaisti
,
M.
,
2020
, “
An Instrument for Measuring Blood Pressure and Assessing Cardiovascular Health From the Fingertip
,”
Biosens. Bioelectron.
,
167
, p.
112483
.
18.
Huang
,
Y.-C.
,
Liu
,
Y.
,
Ma
,
C.
,
Cheng
,
H.-C.
,
He
,
Q.
,
Wu
,
H.
,
Wang
,
C.
,
Lin
,
C.-Y.
,
Huang
,
Y.
, and
Duan
,
X.
,
2020
, “
Sensitive Pressure Sensors Based on Conductive Microstructured Air-Gap Gates and Two-Dimensional Semiconductor Transistors
,”
Nat. Electron.
,
3
(
1
), pp.
59
69
.
19.
Chu
,
Y.
,
Zhong
,
J.
,
Liu
,
H.
,
Ma
,
Y.
,
Liu
,
N.
,
Song
,
Y.
,
Liang
,
J.
,
Shao
,
Z.
,
Sun
,
Y.
,
Dong
,
Y.
,
Wang
,
X.
, and
Lin
,
L.
,
2018
, “
Human Pulse Diagnosis for Medical Assessments Using a Wearable Piezoelectret Sensing System
,”
Adv. Funct. Mater.
,
28
(
40
), p.
1803413
.
20.
Zou
,
B.
,
Chen
,
Y.
,
Liu
,
Y.
,
Xie
,
R.
,
Du
,
Q.
,
Zhang
,
T.
,
Shen
,
Y.
,
Zheng
,
B.
,
Li
,
S.
,
Wu
,
J.
,
Zhang
,
W.
,
Huang
,
W.
,
Huang
,
X.
, and
Huo
,
F.
,
2019
, “
Repurposed Leather With Sensing Capabilities for Multifunctional Electronic Skin
,”
Adv. Sci.
,
6
(
3
), p.
1801283
.
21.
Meng
,
K.
,
Zhao
,
S.
,
Zhou
,
Y.
,
Wu
,
Y.
,
Zhang
,
S.
,
He
,
Q.
,
Wang
,
X.
,
Zhou
,
Z.
,
Fan
,
W.
,
Tan
,
X.
,
Yang
,
J.
, and
Chen
,
J.
,
2020
, “
A Wireless Textile-Based Sensor System for Self-Powered Personalized Health Care
,”
Matter
,
2
(
4
), pp.
896
907
.
22.
Peng
,
X.
,
Dong
,
K.
,
Ye
,
C.
,
Jiang
,
Y.
,
Zhai
,
S.
,
Cheng
,
R.
,
Liu
,
D.
,
Gao
,
X.
,
Wang
,
J.
, and
Wang
,
Z. L.
,
2020
, “
A Breathable, Biodegradable, Antibacterial, and Self-Powered Electronic Skin Based on All-Nanofiber Triboelectric Nanogenerators
,”
Sci. Adv.
,
6
(
26
), p.
eaba9624
.
23.
Zhang
,
Y.
,
,
C.
,
Lu
,
B.
,
Feng
,
X.
, and
Wang
,
J.
,
2020
, “
Theoretical Modeling on Monitoring Left Ventricle Deformation Using Conformal Piezoelectric Sensors
,”
ASME J. Appl. Mech.
,
87
(
1
), p.
011007
.
24.
Wang
,
C.
,
Li
,
X.
,
Hu
,
H.
,
Zhang
,
L.
,
Huang
,
Z.
,
Lin
,
M.
,
Zhang
,
Z.
,
Yin
,
Z.
,
Huang
,
B.
,
Gong
,
H.
,
Bhaskaran
,
S.
,
Gu
,
Y.
,
Makihata
,
M.
,
Guo
,
Y.
,
Lei
,
Y.
,
Chen
,
Y.
,
Wang
,
C.
,
Yang
,
L.
,
Zhang
,
T.
,
Chen
,
Z.
,
Pisano
,
A. P.
,
Zhang
,
L.
,
Zhou
,
Q.
, and
Xu
,
S.
,
2018
, “
Monitoring of the Central Blood Pressure Waveform via a Conformal Ultrasonic Device
,”
Nat. Biomed. Eng.
,
2
(
9
), pp.
687
695
.
25.
Howard
,
G.
,
Sharrett
,
A. R.
,
Heiss
,
G.
,
Evans
,
G. W.
,
Chambless
,
L. E.
,
Riley
,
W. A.
, and
Burke
,
G. L.
,
1993
, “
Carotid Artery Intimal-Medial Thickness Distribution in General Populations as Evaluated by B-Mode Ultrasound. ARIC Investigators
,”
Stroke
,
24
(
9
), pp.
1297
1304
.
26.
Kim
,
J.
,
Salvatore
,
G. A.
,
Araki
,
H.
,
Chiarelli
,
A. M.
,
Xie
,
Z.
,
Banks
,
A.
,
Sheng
,
X.
,
Liu
,
Y.
,
Lee
,
J. W.
,
Jang
,
K.-I.
,
Heo
,
S. Y.
,
Cho
,
K.
,
Luo
,
H.
,
Zimmerman
,
B.
,
Kim
,
J.
,
Yan
,
L.
,
Feng
,
X.
,
Xu
,
S.
,
Fabiani
,
M.
,
Gratton
,
G.
,
Huang
,
Y.
,
Paik
,
U.
, and
Rogers
,
J. A.
,
2016
, “
Battery-Free, Stretchable Optoelectronic Systems for Wireless Optical Characterization of the Skin
,”
Sci. Adv.
,
2
(
8
), p.
e1600418
.
27.
Chandrasekhar
,
A.
,
Kim
,
C.-S.
,
Naji
,
M.
,
Natarajan
,
K.
,
Hahn
,
J.-O.
, and
Mukkamala
,
R.
,
2018
, “
Smartphone-Based Blood Pressure Monitoring via the Oscillometric Finger-Pressing Method
,”
Sci. Transl. Med.
,
10
(
431
), p.
eaap8679
.
28.
Ma
,
Y.
,
Choi
,
J.
,
Hourlier-Fargette
,
A.
,
Xue
,
Y.
,
Chung
,
H. U.
,
Lee
,
J. Y.
,
Wang
,
X.
,
Xie
,
Z.
,
Kang
,
D.
,
Wang
,
H.
,
Han
,
S.
,
Kang
,
S.-K.
,
Kang
,
Y.
,
Yu
,
X.
,
Slepian
,
M. J.
,
Raj
,
M. S.
,
Model
,
J. B.
,
Feng
,
X.
,
Ghaffari
,
R.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2018
, “
Relation Between Blood Pressure and Pulse Wave Velocity for Human Arteries
,”
Proc. Natl. Acad. Sci. USA
,
115
(
44
), pp.
11144
11149
.
29.
Boutry
,
C. M.
,
Nguyen
,
A.
,
Lawal
,
Q. O.
,
Chortos
,
A.
,
Rondeau-Gagné
,
S.
, and
Bao
,
Z.
,
2015
, “
A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring
,”
Adv. Mater.
,
27
(
43
), pp.
6954
6961
.
30.
Katsuura
,
T.
,
Izumi
,
S.
,
Yoshimoto
,
M.
,
Kawaguchi
,
H.
,
Yoshimoto
,
S.
, and
Sekitani
,
T.
,
2017
, “
Wearable Pulse Wave Velocity Sensor Using Flexible Piezoelectric Film Array
,”
IEEE Biomedical Circuits and Systems Conference (BioCAS)
,
Turin, Italy
,
Oct. 19–21
, pp.
1
4
.
31.
Jia
,
Y.
,
Punithakumar
,
K.
,
Noga
,
M.
, and
Hemmati
,
A.
,
2021
, “
Blood Flow Manipulation in the Aorta With Coarctation and Arch Narrowing for Pediatric Subjects
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021001
.
32.
Maeda
,
Y.
,
Sekine
,
M.
, and
Tamura
,
T.
,
2011
, “
Relationship Between Measurement Site and Motion Artifacts in Wearable Reflected Photoplethysmography
,”
J. Med. Syst.
,
35
(
5
), pp.
969
976
.
33.
Melhuish
,
T. M.
, and
White
,
L. D.
,
2016
, “
Optimal Wrist Positioning for Radial Arterial Cannulation in Adults: A Systematic Review and Meta-Analysis
,”
Am. J. Emerg. Med.
,
34
(
12
), pp.
2372
2378
.
34.
Bank
,
A. J.
,
Wilson
,
R. F.
,
Kubo
,
S. H.
,
Holte
,
J. E.
,
Dresing
,
T. J.
, and
Wang
,
H.
,
1995
, “
Direct Effects of Smooth Muscle Relaxation and Contraction on in Vivo Human Brachial Artery Elastic Properties
,”
Circ. Res.
,
77
(
5
), pp.
1008
1016
.
35.
Bank
,
A. J.
,
1997
, “
Physiologic Aspects of Drug Therapy and Large Artery Elastic Properties
,”
Vasc. Med.
,
2
(
1
), pp.
44
50
.
36.
Jayendiran
,
R.
,
Nour
,
B.
, and
Ruimi
,
A.
,
2021
, “
Performance of a Nitinol Honeycomb Stent for the Management of Atherosclerotic Aortic Plaque: Crimping, Sealing, and Fluid–Structure Interaction Analysis
,”
ASME J. Appl. Mech.
,
88
(
3
), p.
031013
.
37.
Won
,
S. M.
,
Wang
,
H.
,
Kim
,
B. H.
,
Lee
,
K.
,
Jang
,
H.
,
Kwon
,
K.
,
Han
,
M.
,
Crawford
,
K. E.
,
Li
,
H.
,
Lee
,
Y.
,
Yuan
,
X.
,
Kim
,
S. B.
,
Oh
,
Y. S.
,
Jang
,
W. J.
,
Lee
,
J. Y.
,
Han
,
S.
,
Kim
,
J.
,
Wang
,
X.
,
Xie
,
Z.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2019
, “
Multimodal Sensing With a Three-Dimensional Piezoresistive Structure
,”
ACS Nano
,
13
(
10
), pp.
10972
10979
.
38.
Park
,
Y.
,
Kwon
,
K.
,
Kwak
,
S. S.
,
Kwak
,
J. W.
,
Luan
,
H.
,
Chung
,
T. S.
,
San Chun
,
K.
,
Kim
,
J. U.
,
Jang
,
H.
,
Ryu
,
H.
,
Jeong
,
H.
,
Won
,
S. M.
,
Kang
,
Y. J.
,
Zhang
,
M.
,
Pontes
,
D.
,
Kampmeier
,
B. R.
,
Seo
,
S. H.
,
Zhao
,
J.
,
Jung
,
I.
,
Huang
,
Y.
,
Xu
,
S.
, and
Rogers
,
J. A.
,
2020
, “
Wireless, Skin-Interfaced Sensors for Compression Therapy
,”
Sci. Adv.
,
6
(
49
), p.
eabe1655
.
39.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
,
Badea
A
,
Liu
,
Y.
,
Xiao
,
D.
,
Zhou
,
G.
,
Lee
,
J.
,
Chung
,
H. U.
,
Ren
,
W.
,
Banks
,
A.
,
Li
,
X.
,
Paik
,
U.
,
Nuzzo
,
R. G.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
40.
Zhang
,
Y.
,
Yan
,
Z.
,
Nan
,
K.
,
Xiao
,
D.
,
Liu
,
Y.
,
Luan
,
H.
,
Fu
,
H.
,
Wang
,
X.
,
Yang
,
Q.
,
Wang
,
J.
,
Ren
,
W.
,
Si
,
H.
,
Liu
,
F.
,
Yang
,
L.
,
Li
,
H.
,
Wang
,
J.
,
Guo
,
X.
,
Luo
,
H.
,
Wang
,
L.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci. USA
,
112
(
38
), pp.
11757
11764
.
41.
Yan
,
Z.
,
Zhang
,
F.
,
Liu
,
F.
,
Han
,
M.
,
Ou
,
D.
,
Liu
,
Y.
,
Lin
,
Q.
,
Guo
,
X.
,
Fu
,
H.
,
Xie
,
Z.
,
Gao
,
M.
,
Huang
,
Y.
,
Kim
,
J.
,
Qiu
,
Y.
,
Nan
,
K.
,
Kim
,
J.
,
Gutruf
,
P.
,
Luo
,
H.
,
Zhao
,
A.
,
Hwang
,
K.-C.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Mechanical Assembly of Complex, 3D Mesostructures From Releasable Multilayers of Advanced Materials
,”
Sci. Adv.
,
2
(
9
), p.
e1601014
.
42.
Fu
,
H.
,
Nan
,
K.
,
Bai
,
W.
,
Huang
,
W.
,
Bai
,
K.
,
Lu
,
L.
,
Zhou
,
C.
,
Liu
,
Y.
,
Liu
,
F.
,
Wang
,
J.
,
Han
,
M.
,
Yan
,
Z.
,
Luan
,
H.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Zhao
,
J.
,
Xu
,
C.
,
Li
,
M.
,
Lee
,
J. W.
,
Liu
,
Y.
,
Fang
,
D.
,
Li
,
X.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2018
, “
Morphable 3D Mesostructures and Microelectronic Devices by Multistable Buckling Mechanics
,”
Nat. Mater.
,
17
(
3
), pp.
268
276
.
43.
Ning
,
X.
,
Yu
,
X.
,
Wang
,
H.
,
Sun
,
R.
,
Corman
,
R.
,
Li
,
H.
,
Lee
,
C. M.
,
Xue
,
Y.
,
Chempakasseril
,
A.
,
Yao
,
Y.
,
Zhang
,
Z.
,
Luan
,
H.
,
Wang
,
Z.
,
Xia
,
W.
,
Feng
,
X.
,
Ewoldt
,
R. H.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2018
, “
Mechanically Active Materials in Three-Dimensional Mesostructures
,”
Sci. Adv.
,
4
(
9
), p.
eaat8313
.
44.
Han
,
M.
,
Wang
,
H.
,
Yang
,
Y.
,
Liang
,
C.
,
Bai
,
W.
,
Yan
,
Z.
,
Li
,
H.
,
Xue
,
Y.
,
Wang
,
X.
,
Akar
,
B.
,
Zhao
,
H.
,
Luan
,
H.
,
Lim
,
J.
,
Kandela
,
I.
,
Ameer
,
G. A.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2019
, “
Three-Dimensional Piezoelectric Polymer Microsystems for Vibrational Energy Harvesting, Robotic Interfaces and Biomedical Implants
,”
Nat. Electron.
,
2
(
1
), pp.
26
35
.
45.
Zhu
,
F.
,
Xiao
,
H.
,
Li
,
H.
,
Huang
,
Y.
, and
Ma
,
Y.
,
2019
, “
Irregular Hexagonal Cellular Substrate for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
034501
.
46.
Yan
,
Z.
,
Wang
,
B.
,
Wang
,
K.
,
Zhao
,
S.
,
Li
,
S.
,
Huang
,
Y.
, and
Wang
,
H.
,
2020
, “
Cellular Substrate to Facilitate Global Buckling of Serpentine Structures
,”
ASME J. Appl. Mech.
,
87
(
2
), p.
024501
.
47.
Xu
,
Z.
,
Fan
,
Z.
,
Zi
,
Y.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2020
, “
An Inverse Design Method of Buckling-Guided Assembly for Ribbon-Type 3D Structures
,”
ASME J. Appl. Mech.
,
87
(
3
), p.
031004
.
48.
Li
,
K.
,
Chen
,
L.
,
Zhu
,
F.
, and
Huang
,
Y.
,
2021
, “
Thermal and Mechanical Analyses of Compliant Thermoelectric Coils for Flexible and Bio-Integrated Devices
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021011
.
49.
Yin
,
S.
, and
Su
,
Y.
,
2019
, “
A Traction-Free Model for the Tensile Stiffness and Bending Stiffness of Laminated Ribbons of Flexible Electronics
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051011
.
50.
Feng
,
P.
,
Yuan
,
J.
,
Huang
,
Y.
, and
Li
,
X.
,
2020
, “
Analytical Solutions for the Lateral-Torsional Buckling of Serpentine Interconnects in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081005
.
51.
Liu
,
G.
,
Sun
,
L.
, and
Su
,
Y.
,
2020
, “
Scaling Effects in the Mechanical System of the Flexible Epidermal Electronics and the Human Skin
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081007
.
52.
Zhao
,
S.
,
Zhu
,
F.
,
Yan
,
Z.
,
Li
,
D.
,
Xiang
,
J.
,
Huang
,
Y.
, and
Luan
,
H.
,
2020
, “
A Nonlinear Mechanics Model of Zigzag Cellular Substrates for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
6
), p.
061006
.
53.
Yuan
,
X.
,
Won
,
S. M.
,
Han
,
M.
,
Wang
,
Y.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Wang
,
H.
,
2021
, “
Mechanics of Encapsulated Three-Dimensional Structures for Simultaneous Sensing of Pressure and Shear Stress
,”
J. Mech. Phys. Solids
,
151
, p.
104400
.
54.
Kim
,
J. U.
,
Lee
,
Y. J.
,
Lee
,
J.
, and
Kim
,
J. Y.
,
2015
, “
Differences in the Properties of the Radial Artery Between cun, Guan, chi, and Nearby Segments Using Ultrasonographic Imaging: A Pilot Study on Arterial Depth, Diameter, and Blood Flow
,”
Evidence-Based Complementary Altern. Med.
,
2015
, p.
381634
.
55.
Singh
,
P.
,
Choudhury
,
M. I.
,
Roy
,
S.
, and
Prasad
,
A.
,
2017
, “
Computational Study to Investigate Effect of Tonometer Geometry and Patient-Specific Variability on Radial Artery Tonometry
,”
J. Biomech.
,
58
, pp.
105
113
.
56.
Laurent
,
S.
,
Girerd
,
X.
,
Mourad
,
J.-J.
,
Lacolley
,
P.
,
Beck
,
L.
,
Boutouyrie
,
P.
,
Mignot
,
J.-P.
, and
Safar
,
M.
,
1994
, “
Elastic Modulus of the Radial Artery Wall Material Is Not Increased in Patients With Essential Hypertension
,”
Arterioscler. Thromb. Vasc. Biol.
,
14
(
7
), pp.
1223
1231
.
57.
Riley
,
W. A.
,
Barnes
,
R. W.
,
Evans
,
G. W.
, and
Burke
,
G. L.
,
1992
, “
Ultrasonic Measurement of the Elastic Modulus of the Common Carotid Artery. The Atherosclerosis Risk in Communities (ARIC) Study
,”
Stroke
,
23
(
7
), pp.
952
956
.
58.
Girerd
,
X.
,
Giannattasio
,
C.
,
Moulin
,
C.
,
Safar
,
M.
,
Mancia
,
G.
, and
Laurent
,
S.
,
1998
, “
Regression of Radial Artery Wall Hypertrophy and Improvement of Carotid Artery Compliance After Long-Term Antihypertensive Treatment in Elderly Patients
,”
J. Am. Coll. Cardiol.
,
31
(
5
), pp.
1064
1073
.
59.
Bramwell
,
J. C.
, and
Hill
,
A. V.
, “
Containing Papers of a Biological Character, 1922, “The Velocity of Pulse Wave in Man
,”
Proc. R. Soc. Lond. B.
,
93
(
652
), pp.
298
306
.
60.
Fung
,
Y.-C.
,
2013
,
Biomechanics: Circulation
,
Springer Science & Business Media
,
New York
.
61.
Fung
,
Y.-C.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media
,
New York
.
62.
Wang
,
Q.
,
Liu
,
M.
,
Wang
,
Z.
,
Chen
,
C.
, and
Wu
,
J.
,
2021
, “
Large Deformation and Instability of Soft Hollow Cylinder With Surface Effects
,”
ASME J. Appl. Mech.
,
88
(
4
), p.
041010
.
You do not currently have access to this content.