Abstract

In this paper, we report a piezoelectric phononic crystal plate featuring broadband wave attenuation. In the piezoelectric phononic crystal system, the transmitted elastic wave is attenuated owing to destructive interference by taking advantages of phase difference. The proposed concept is applied to a piezoelectric phononic crystal plate synthesized by functional dual-lane units that yields phase difference. Whereas, the piezoelectric unit-cells are connected negative capacitance shunt circuits individually. Our analysis shows that the coupled phononic crystal has a strong broadband low-frequency wave attenuation capability. The bandwidth of 10 dB wave attenuation is broadened by 34 times in the vicinity of 5 kHz comparing to that of a local resonance metamaterial under the same mechanical configuration. Moreover, the frequency range of wave attenuation of the proposed system can be online adjusted through the modification of the external shunt circuits.

References

1.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
. 10.1126/science.289.5485.1734
2.
Fang
,
N.
,
Lee
,
H.
,
Sun
,
C.
, and
Zhang
,
X.
,
2005
, “
Sub-Diffraction-Limited Optical Imaging With a Silver Superlens
,”
Science
,
308
(
5721
), pp.
534
537
. 10.1126/science.1108759
3.
Pendry
,
J. B.
, and
Li
,
J.
,
2008
, “
An Acoustic Metafluid: Realizing a Broadband Acoustic Cloak
,”
New J. Phys.
,
10
(
11
), p.
115032
. 10.1088/1367-2630/10/11/115032
4.
Landy
,
N. I.
,
Sajuyigbe
,
S.
,
Mock
,
J. J.
,
Smith
,
D. R.
, and
Padilla
,
W. J.
,
2008
, “
Perfect Metamaterial Absorber
,”
Phys. Rev. Lett.
,
100
(
20
), p.
207402
. 10.1103/PhysRevLett.100.207402
5.
Yang
,
J.
,
Huang
,
M.
,
Yang
,
C.
,
Peng
,
J.
, and
Chang
,
J.
,
2010
, “
An External Acoustic Cloak With N-Sided Regular Polygonal Cross Section Based on Complementary Medium
,”
Comput. Mater. Sci.
,
49
(
1
), pp.
9
14
. 10.1016/j.commatsci.2010.03.050
6.
Bigoni
,
D.
,
Guenneau
,
S.
,
Movchan
,
A. B.
, and
Brun
,
M.
,
2013
, “
Elastic Metamaterials With Inertial Locally Resonant Structures: Application to Lensing and Localization
,”
Phys. Rev. B
,
87
(
17
), p.
174303
. 10.1103/PhysRevB.87.174303
7.
Baravelli
,
E.
, and
Ruzzene
,
M.
,
2013
, “
Internally Resonating Lattices for Bandgap Generation and Low-Frequency Vibration Control
,”
J. Sound Vib.
,
332
(
25
), pp.
6562
6579
. 10.1016/j.jsv.2013.08.014
8.
Yoo
,
Y. J.
,
Zheng
,
H. Y.
,
Kim
,
Y. J.
,
Rhee
,
J. Y.
,
Kang
,
J. H.
,
Kim
,
K. W.
,
Cheong
,
H.
,
Kim
,
Y. H.
, and
Lee
,
Y. P.
,
2014
, “
Flexible and Elastic Metamaterial Absorber for Low Frequency, Based on Small-Size Unit Cell
,”
Appl. Phys. Lett.
,
105
(
4
), p.
041902
. 10.1063/1.4885095
9.
Pendry
,
J. B.
,
2000
, “
Negative Refraction Makes a Perfect Lens
,”
Phys. Rev. Lett.
,
85
(
18
), pp.
3966
3969
. 10.1103/PhysRevLett.85.3966
10.
Li
,
J.
, and
Chan
,
C. T.
,
2004
, “
Double-Negative Acoustic Metamaterial
,”
Phys. Rev. E
,
70
(
5
), p.
055602
. 10.1103/PhysRevE.70.055602
11.
Climente
,
A.
,
Torrent
,
D.
, and
Sanchez-Dehesa
,
J.
,
2010
, “
Sound Focusing by Gradient Index Sonic Lenses
,”
Appl. Phys. Lett.
,
97
(
10
), p.
104103
. 10.1063/1.3488349
12.
Wu
,
T.
,
Chen
,
Y.
,
Sun
,
J.
,
Lin
,
S.
, and
Huang
,
T.
,
2011
, “
Focusing of the Lowest Antisymmetric Lamb Wave in a Gradient-Index Phonoic Crystal Plate
,”
Appl. Phys. Lett.
,
98
(
17
), p.
171911
. 10.1063/1.3583660
13.
Zhao
,
J.
,
Marchal
,
R.
,
Bonello
,
B.
, and
Boyko
,
O.
,
2012
, “
Efficient Focalization of Antisymmetric Lamb Wave in Gradient-Index Phonoic Crystal Plates
,”
Appl. Phys. Lett.
,
101
(
26
), p.
261905
. 10.1063/1.4773369
14.
Yan
,
X.
,
Zhu
,
R.
,
Huang
,
G.
, and
Yuan
,
F.
,
2013
, “
Focusing Guided Waves Using Surface Bonded Elastic Metamaterials
,”
Appl. Phys. Lett.
,
103
(
12
), p.
121901
. 10.1063/1.4821258
15.
Tol
,
S.
,
Degertekin
,
F.
, and
Erturk
,
A.
,
2016
, “
Gradient Index Phononic Crystal Lens-Based Enhancement of Elastic Wave Energy Harvesting
,”
Appl. Phys. Lett.
,
109
(
6
), p.
063902
. 10.1063/1.4960792
16.
Beck
,
B. S.
,
Cunefare
,
K. A.
,
Ruzzene
,
M.
, and
Collet
,
M.
,
2011
, “
Experimental Analysis of a Cantilever Beam With a Shunted Piezoelectric Periodic Array
,”
J. Intell. Mater. Syst. Struct.
,
22
(
11
), pp.
1177
1187
. 10.1177/1045389X11411119
17.
Xu
,
J.
,
Li
,
S.
, and
Tang
,
J.
,
2018
, “
Customized Shaping of Vibration Modes by Acoustic Metamaterial Synthesis
,”
Smart Mater. Struct.
,
27
(
4
), p.
045001
. 10.1088/1361-665X/aaad9f
18.
Yang
,
Z.
,
Mei
,
J.
,
Yang
,
M.
,
Chan
,
N. H.
, and
Sheng
,
P.
,
2008
, “
Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,”
Phys. Rev. Lett.
,
101
(
20
), p.
204301
. 10.1103/PhysRevLett.101.204301
19.
Mei
,
J.
,
Ma
,
G. C.
,
Yang
,
M.
,
Yang
,
Z.
,
Wen
,
W. J.
, and
Sheng
,
P.
,
2012
, “
Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound
,”
Nat. Commun.
,
3
(
1
), p.
756
. 10.1038/ncomms1758
20.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
. 10.1103/PhysRevLett.71.2022
21.
Monsoriu
,
J. A.
,
Depine
,
R. A.
,
MartÝnez-Ricci
,
M. L.
, and
Silvestre
,
E.
,
2006
, “
Interaction Between Non-Bragg Band Gaps in 1D Metamaterial Photonic Crystals
,”
Opt. Express
,
14
(
26
), pp.
12958
12967
. 10.1364/OE.14.012958
22.
Airoldi
,
L.
, and
Ruzzene
,
M.
,
2011
, “
Wave Propagation Control in Beams Through Periodic Multi-Branch Shunts
,”
J. Intell. Mater. Syst. Struct.
,
22
(
14
), pp.
1567
1579
. 10.1177/1045389X11408372
23.
Huang
,
G.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
. 10.1115/1.4000784
24.
Tan
,
K. T.
,
Huang
,
H. H.
, and
Sun
,
C. T.
,
2014
, “
Blast-Wave Impact Mitigation Using Negative Effective Mass Density Concept of Elastic Metamaterials
,”
Int. J. Impact Eng.
,
64
, pp.
20
29
. 10.1016/j.ijimpeng.2013.09.003
25.
Xu
,
J.
, and
Tang
,
J.
,
2017
, “
Tunable Prism Based on Piezoelectric Metamaterial for Acoustic Beam Steering
,”
Appl. Phys. Lett.
,
110
(
18
), p.
181902
. 10.1063/1.4982717
26.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Longitudinal Wave Band Gaps in Metamaterial-Based Elastic Rods Containing Multi-Degree-of-Freedom Resonators
,”
New J. Phys.
,
14
(
3
), p.
033042
. 10.1088/1367-2630/14/3/033042
27.
Chen
,
Y.
,
Huang
,
G.
, and
Sun
,
C. T.
,
2014
, “
Band Gap Control in an Active Elastic Metamaterial With Negative Capacitance Piezoelectric Shunting
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061008
. 10.1115/1.4028378
28.
Wang
,
G.
, and
Chen
,
S.
,
2016
, “
Large Low-Frequency Vibration Attenuation Induced by Arrays of Piezoelectric Patches Shunted With Amplifier-Resonator Feedback Circuit
,”
Smart Mater. Struct.
,
25
(
1
), p.
015004
. 10.1088/0964-1726/25/1/015004
29.
Thorp
,
O.
,
Ruzzene
,
M.
, and
Baz
,
A.
,
2001
, “
Attenuation and Localization of Wave Propagation in Rods With Periodic Shunted Piezoelectric Patches
,”
Smart Mater. Struct.
,
10
(
5
), p.
979
. 10.1088/0964-1726/10/5/314
30.
Hu
,
G.
,
Tang
,
L.
,
Das
,
R.
,
Gao
,
S.
, and
Liu
,
H.
,
2017
, “
Acoustic Metamaterials With Coupled Local Resonators for Broadband Vibration Suppression
,”
AIP Adv.
,
7
(
2
), p.
025211
. 10.1063/1.4977559
31.
Chen
,
S.
,
Wang
,
G.
,
Wen
,
J.
, and
Wen
,
X.
,
2013
, “
Wave Propagation and Attenuation in Plates With Periodic Arrays of Shunted Piezo-Patches
,”
J. Sound Vib.
,
332
(
6
), pp.
1520
1532
. 10.1016/j.jsv.2012.11.005
32.
Zhu
,
R.
,
Chen
,
Y.
,
Barnhart
,
M.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2016
, “
Experimental Study of an Adaptive Elastic Metamaterial Controlled by Electric Circuits
,”
Appl. Phys. Lett.
,
108
(
1
), p.
011905
. 10.1063/1.4939546
33.
Xu
,
J.
,
Yan
,
R.
, and
Tang
,
J.
,
2018
, “
Broadening Bandgap Width of Piezoelectric Metamaterial by Introducing Cavity
,”
Appl. Sci.
,
8
(
9
), p.
1606
. 10.3390/app8091606
34.
Fang
,
X.
,
Wen
,
J.
,
Bonello
,
B.
,
Yin
,
J.
, and
Yu
,
D.
,
2017
, “
Ultra-Low and Ultra-Broad-Band Nonlinear Acoustic Metamaterials
,”
Nat. Commun.
,
8
(
1
), p.
1288
. 10.1038/s41467-017-00671-9
35.
Khajehtourian
,
R.
, and
Hussein
,
M.
,
2014
, “
Dispersion Characteristics of a Nonlinear Elastic Metamaterial
,”
AIP Adv.
,
4
(
12
), p.
124308
. 10.1063/1.4905051
36.
Lazarov
,
B. S.
, and
Jensen
,
J. S.
,
2007
, “
Low-Frequency Band Gaps in Chains With Attached Non-Linear Oscillators
,”
Int. J. Nonlin. Mech.
,
42
(
10
), pp.
1186
1193
. 10.1016/j.ijnonlinmec.2007.09.007
37.
Lee
,
W. S.
,
Kim
,
D. Z.
, and
Kim
,
K. J.
,
2006
, “
Wideband Planar Monopole Antennas With Dual Band-Notched Characteristics
,”
IEEE Trans. Microwave Theory Tech.
,
54
(
6
), pp.
2800
2806
. 10.1109/TMTT.2006.874895
38.
Oh
,
T. K.
,
Lim
,
Y. G.
, and
Chae
,
C. B.
,
2015
, “
Dual-Polarization Slot Antenna With High Cross-Polarization Discrimination for Indoor Small-Cell MIMO Systems
,”
IEEE Antennas Wirel. Propag. Lett.
,
14
(
1
), pp.
374
377
. 10.1109/LAWP.2014.2364517
39.
Deymier
,
P.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
,
Springer
,
Berlin Heidelberg
.
You do not currently have access to this content.