An innovative bistable energy-absorbing cylindrical shell structure composed of multiple unit cells is presented in this paper. The structural parameters of the single-layer cylindrical shell structure that produces bistable characteristics are expounded both analytically and numerically. The influence of the number of circumferential cells and the size parameters of the cell ligament on the structure’s macroscopic mechanical response was analyzed. A series of cylindrical shell structures with various size parameters were fabricated using a stereolithography apparatus (SLA). Uniaxial loading and unloading experiments were conducted to achieve force–displacement relationships. Deformation of the structural multistable phase transition response was discussed based on experimental and finite element simulation results. The results show that the proposed innovative single-layer cylindrical shell structure will stabilize at two different positions under certain parameters. The multilayer cylindrical shell exhibits different force–displacement response curves under loading and unloading, and these curves enclose a closed area. In addition, this structure can be cyclically loaded and unloaded, thanks to its good stability and reproducibility, making it attractive in applications requiring repetitive energy absorption.

References

1.
Lee
,
J.-H.
,
Singer
,
J. P.
, and
Thomas
,
E. L.
,
2012
, “
Micro-/Nanostructured Mechanical Metamaterials
,”
Adv. Mater.
,
24
(
36
), pp.
4782
4810
.
2.
Yu
,
X.
,
Zhou
,
J.
,
Liang
,
H.
,
Jiang
,
Z.
, and
Wu
,
L.
,
2018
, “
Mechanical Metamaterials Associated With Stiffness, Rigidity and Compressibility: A Brief Review
,”
Prog. Mater. Sci.
94
, pp.
114
173
.
3.
Li
,
H.
,
Ma
,
Y.
,
Wen
,
W.
,
Wu
,
W.
,
Lei
,
H.
, and
Fang
,
D.
,
2017
, “
In Plane Mechanical Properties of Tetrachiral and Antitetrachiral Hybrid Metastructures
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081006
.
4.
Li
,
T.
,
Chen
,
Y.
,
Hu
,
X.
,
Li
,
Y.
, and
Wang
,
L.
,
2018
, “
Exploiting Negative Poisson’s Ratio to Design 3D-Printed Composites With Enhanced Mechanical Properties
,”
Mater. Des.
142
, pp.
247
258
.
5.
Ma
,
C.
,
Lei
,
H.
,
Hua
,
J.
,
Bai
,
Y.
,
Liang
,
J.
, and
Fang
,
D.
,
2018
, “
Experimental and Simulation Investigation of the Reversible Bi-Directional Twisting Response of Tetra-Chiral Cylindrical Shells
,”
Compos. Struct.
203
, pp.
142
152
.
6.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(4792), pp.
1038
1040
.
7.
Lakes
,
R.
, and
Drugan
,
W.
,
2002
, “
Dramatically Stiffer Elastic Composite Materials Due to a Negative Stiffness
,”
J. Mech. Phys. Solids
,
50
(
5
), pp.
979
1009
.
8.
Ding
,
Y.
,
Liu
,
Z.
,
Qiu
,
C.
, and
Shi
,
J.
,
2007
, “
Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density
,”
Phys. Rev. Lett.
,
99
(
9
), p.
093904
.
9.
Shelby
,
R.
,
Smith
,
D.
, and
Schultz
,
S.
,
2001
, “
Experimental Verification of a Negative Index of Refraction
,”
Science
,
292
(5514), pp.
77
79
.
10.
Caruel
,
M.
,
Allain
,
J.
, and
Truskinovsky
,
L.
,
2015
, “
Mechanics of Collective Unfolding
,”
J. Mech. Phys. Solids
,
76
, pp.
237
259
.
11.
Duoss
,
E.
,
Weisgraber
,
T.
,
Hearon
,
K.
,
Zhu
,
C.
,
Small
,
W.
,
Metz
,
T.
,
Vericella
,
J.
,
Barth
,
H.
,
Kuntz
,
J.
,
Maxwell
,
R.
, and
Spadaccini
,
C.
,
2014
, “
Three-Dimensional Printing of Elastomeric, Cellular Architectures With Negative Stiffness
,”
Adv. Funct. Mater.
,
24
(
31
), pp.
4905
4913
.
12.
Kashdan
,
L.
,
Seepersad
,
C.
,
Haberman
,
M.
, and
Wilson
,
P.
,
2012
, “
Design, Fabrication, and Evaluation of Negative Stiffness Elements Using SLS
,”
Rapid Prototyping J.
,
18
(
3
), pp.
194
200
.
13.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
,
Badea
,
A.
,
Liu
,
Y.
,
Xiao
,
D.
,
Zhou
,
G.
,
Lee
,
J.
,
Chung
,
H. U.
,
Cheng
,
H.
,
Ren
,
W.
,
Banks
,
A.
,
Li
,
X.
,
Paik
,
U.
,
Nuzzo
,
R.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(6218), pp.
154
159
.
14.
Eijk
,
J.
, and
Dijksman
,
J.
,
1979
, “
Plate Spring Mechanism With Constant Negative Stiffness
,”
Mech. Mach. Theory
,
14
(1), pp.
1
9
.
15.
Izard
,
A. G.
,
Alfonso
,
R. F.
,
McKnight
,
G.
, and
Valdevit
,
L.
,
2017
, “
Optimal Design of a Cellular Material Encompassing Negative Stiffness Elements for Unique Combinations of Stiffness and Elastic Hysteresis
,”
Mater. Des.
135
, pp.
37
50
.
16.
Brake
,
M.
,
Baker
,
M.
,
Moore
,
N.
,
Crowson
,
D.
,
Mitchell
,
J.
, and
Houston
,
J.
,
2010
, “
Modeling and Measurement of a Bistable Beam in a Microelectromechanical System
,”
J. Microelectromech. Syst.
,
19
(
6
), pp.
1503
1514
.
17.
Wu
,
C.
,
Lin
,
M.
, and
Chen
,
R.
,
2013
, “
The Derivation of a Bistable Criterion for Double V-Beam Mechanisms
,”
J. Micromech. Microeng.
,
23
(
11
), p.
115005
.
18.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators A
,
69
(3), pp.
212
216
.
19.
Qiu
,
J.
,
Lang
,
J.
, and
Slocum
,
A.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
20.
Zhao
,
J.
,
Jia
,
J.
,
He
,
X.
, and
Wang
,
H.
,
2008
, “
Post-Buckling and Snap-Through Behavior of Inclined Slender Beams
,”
ASME J. Appl. Mech.
,
75
(
4
), p.
041020
.
21.
Restrepo
,
D.
,
Mankame
,
N.
, and
Zavattieri
,
P.
,
2015
, “
Phase Transforming Cellular Materials
,”
Extreme Mech. Lett.
4
, pp.
52
60
.
22.
Rafsanjani
,
A.
, and
Pasini
,
D.
,
2016
, “
Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs
,”
Extreme Mech. Lett.
9
(
2
), pp.
291
296
.
23.
Hewage
,
T.
,
Alderson
,
K.
,
Alderson
,
A.
, and
Scarpa
,
F.
,
2016
, “
Double-Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson’s Ratio Properties
,”
Adv. Mater.
28
(
46
), pp.
10323
10332
.
24.
Yang
,
D.
,
Jin
,
L.
,
Martinez
,
R.
,
Bertoldi
,
K.
,
Whitesides
,
G.
, and
Suo
,
Z.
,
2016
, “
Phase-Transforming and Switchable Metamaterials
,”
Extreme Mech. Lett.
6
, pp.
1
9
.
25.
Mirkhalaf
,
M.
, and
Barthelat
,
F.
,
2017
, “
Design, 3D Printing and Testing of Architectured Materials With Bistable Interlocks
,”
Extreme Mech. Lett.
11
, pp.
1
7
.
26.
Goldsberry
,
B.
, and
Haberman
,
M.
,
2018
, “
Negative Stiffness Honeycombs as Tunable Elastic Metamaterials
,”
J. Appl. Phys.
123
(
9
), pp.
091711
.
27.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Multistable Shape-Reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
7915
7920
.
28.
Shan
,
S.
,
Kang
,
S.
,
Raney
,
J.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
29.
Chen
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2017
, “
Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically With Multi-Material 3D Printing
,”
Sci. Rep.
7
, pp.
45671
.
30.
Ren
,
C.
,
Yang
,
D.
, and
Qin
,
H.
,
2018
, “
Mechanical Performance of Multidirectional Buckling-Based Negative Stiffness Metamaterials: An Analytical and Numerical Study
,”
Materials
,
11
(7), p.
1078
.
31.
Ha
,
C.
,
Lakes
,
R.
, and
Plesha
,
M.
,
2018
, “
Design, Fabrication, and Analysis of Lattice Exhibiting Energy Absorption Via Snap-Through Behavior
,”
Mater. Des.
141
, pp.
426
437
.
32.
Yang
,
H.
, and
Ma
,
L.
,
2018
, “
Multistable Mechanical Metamaterials With Shape-Reconfiguration and Zero Poisson’s Ratio
,”
Mater. Des.
152
, pp.
181
190
.
33.
Yang
,
H.
, and
Ma
,
L.
,
2019
, “
Multistable Mechanical Metamaterials by Elastic Buckling Instability
,”
J. Mater. Sci.
,
54
(4), pp.
3509
3526
.
34.
Fulcher
,
B.
,
Shahan
,
D.
,
Haberman
,
M.
,
Seepersad
,
C.
, and
Wilson
,
P.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(3), p.
031009
.
35.
Meaud
,
J.
, and
Che
,
K.
,
2017
, “
Tuning Elastic Wave Propagation in Multistable Architected Materials
,”
Int. J. Solids Struct.
122–123
, pp.
69
80
.
36.
Liu
,
J.
,
Qin
,
H.
, and
Liu
,
Y.
,
2018
, “
Dynamic Behaviors of Phase Transforming Cellular Structures
,”
Compos. Struct.
184
, pp.
536
544
.
37.
Debeau
,
D.
,
Seepersad
,
C.
, and
Haberman
,
M.
,
2018
, “
Impact Behavior of Negative Stiffness Honeycomb Materials
,”
J. Mater. Res.
,
33
(
3
), pp.
290
299
.
38.
Wei
,
K.
,
Yang
,
Q.
,
Ling
,
B.
,
Qu
,
Z.
,
Pei
,
Y.
, and
Fang
,
D.
,
2018
, “
Design and Analysis of Lattice Cylindrical Shells With Tailorable Axial and Radial Thermal Expansion
,”
Extreme Mech. Lett.
20
, pp.
51
58
.
39.
Che
,
K.
,
Yuan
,
C.
,
Wu
,
J.
,
Qi
,
H.
, and
Meaud
,
J.
,
2017
, “
Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence
,”
ASME J. Appl. Mech.
,
84
(1), p.
011004
.
40.
Liu
,
L.
,
Kamm
,
P.
,
García-Moreno
,
P.
,
Banhart
,
J.
, and
Pasini
,
D.
,
2017
, “
Elastic and Failure Response of Imperfect Three-Dimensional Metallic Lattices: The Role of Geometric Defects Induced by Selective Laser Melting
,”
J. Mech. Phys. Solids
,
107
, pp.
160
184
.
41.
Gorguluarslan
,
R. M.
,
Choi
,
S.
, and
Saldana
,
C. J.
,
2017
, “
Uncertainty Quantification and Validation of 3D Lattice Scaffolds for Computer-Aided Biomedical Applications
,”
J. Mech. Behav. Biomed.
71
, pp.
428
440
.
42.
Li
,
C.
,
Lei
,
H.
,
Liu
,
Y.
,
Zhang
,
X.
,
Xiong
,
J.
,
Zhou
,
H.
, and
Fang
,
D.
,
2018
, “
Crushing Behavior of Multi-Layer Metal Lattice Panel Fabricated by Selective Laser Melting
,”
Int. J. Mech. Sci.
145
, pp.
389
399
.
You do not currently have access to this content.