The cruciforms are widely employed as energy absorbers in ships and offshore structures, or basic components in sandwich panel and multicell structure. The kirigami approach is adopted in the design of cruciform in this paper for the following reasons. First, the manufacture process is simplified. Second, it can alter the stiffness distribution of a structure to trigger desirable progressive collapse modes (PCMs). Third, the kirigami pattern can be referred as a type of geometric imperfection to lower the initial peak force during impact. Experiments and numerical simulations were carried out to validate the effectiveness of kirigami approach for cruciform designs. Numerical simulations were carried out to perform comparative and parametric analyses. The comparative studies among single plate (SP), single plate with kirigami pattern (SPKP), and kirigami cruciform (KC) show that the normalized mean crushing force of KC is nearly two times higher than those of SP and SPKP, whereas the normalized initial peak force of KC reduces by about 20%. In addition, the parametric analyses suggest that both the parameters controlling the overall size (i.e., the global slenderness and local slenderness) and those related to the kirigami pattern (i.e., the length ratio and the relative position ratio) could significantly affect the collapse behavior of the cruciforms.

References

1.
Lu
,
G.
, and
Yu
,
T.
,
2003
,
Energy Absorption of Structures and Materials
,
Elsevier
, CRC-Woodhead, Cambridge, UK.
2.
Marjanishvili
,
S. M.
,
2004
, “
Progressive Analysis Procedure for Progressive Collapse
,”
J. Perform. Constr. Facil.
,
18
(
2
), pp.
79
85
.
3.
Arnold
,
B.
, and
Altenhof
,
W.
,
2004
, “
Experimental Observations on the Crush Characteristics of AA6061 T4 and T6 Structural Square Tubes With and Without Circular Discontinuities
,”
Int. J. Crashworthiness
,
9
(
1
), pp.
73
87
.
4.
Karagiozova
,
D.
, and
Jones
,
N.
,
2008
, “
On the Mechanics of the Global Bending Collapse of Circular Tubes Under Dynamic Axial Load—Dynamic Buckling Transition
,”
Int. J. Impact Eng.
,
35
(
5
), pp.
397
424
.
5.
Isaac
,
C. W.
, and
Oluwole
,
O.
,
2016
, “
Energy Absorption Improvement of Circular Tubes With Externally Press-Fitted Ring Around Tube Surface Subjected Under Axial and Oblique Impact Loading
,”
Thin-Walled Struct.
,
109
, pp.
352
366
.
6.
Li
,
J.
,
Gao
,
G.
,
Guan
,
W.
,
Wang
,
S.
, and
Yu
,
Y.
,
2018
, “
Experimental and Numerical Investigations on the Energy Absorption of Shrink Circular Tube Under Quasi-Static Loading
,”
Int. J. Mech. Sci.
,
137
, pp.
284
294
.
7.
Fan
,
Z.
,
Lu
,
G.
,
Yu
,
T. X.
, and
Liu
,
K.
,
2013
, “
Axial Crushing of Triangular Tubes
,”
Int. J. Appl. Mech.
,
05
(
1
), p.
1350008
.
8.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
727
734
.
9.
Zhang
,
X.
, and
Zhang
,
H.
,
2012
, “
Experimental and Numerical Investigation on Crush Resistance of Polygonal Columns and Angle Elements
,”
Thin-Walled Struct
,
57
, pp.
25
36
.
10.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Ioannidis
,
M. B.
,
Kostazos
,
P. K.
, and
Dimitriou
,
C.
,
2003
, “
Finite Element Simulation of the Axial Collapse of Metallic Thin-Walled Tubes With Octagonal Cross-Section
,”
Thin-Walled Struct.
,
41
(
10
), pp.
891
900
.
11.
Besseling
,
J. F.
,
1956
, “
Analysis of the Plastic Collapse of a Cruciform Column With Initial Twist, Loaded in Compression
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
49
53
.
12.
Haris
,
S.
, and
Amdahl
,
J.
,
2012
, “
Crushing Resistance of a Cruciform and Its Application to Ship Collision and Grounding
,”
Ships Offshore Struct.
,
7
(
2
), pp.
185
195
.
13.
Yamada
,
Y.
, and
Pedersen
,
P.
,
2008
, “
A Benchmark Study of Procedures for Analysis of Axial Crushing of Bulbous Bows
,”
Mar. Struct.
,
21
(
2–3
), pp.
257
293
.
14.
Zhang
,
X.
, and
Zhang
,
H.
,
2015
, “
The Crush Resistance of Four-Panel Angle Elements
,”
Int. J. Impact Eng.
,
78
, pp.
81
97
.
15.
Zhang
,
X.
, and
Zhang
,
H.
,
2013
, “
Energy Absorption Limit of Plates in Thin-Walled Structures Under Compression
,”
Int. J. Impact Eng.
,
57
, pp.
81
98
.
16.
Lee
,
S.
,
Hahn
,
C. S.
,
Rhee
,
M.
, and
Oh
,
J. E.
,
1999
, “
Effect of Triggering on the Energy Absorption Capacity of Axially Compressed Aluminum Tubes
,”
Mater. Des.
,
20
(
1
), pp.
31
40
.
17.
Bandi
,
P.
,
Detwiler
,
D.
,
Schmiedeler
,
J. P.
, and
Tovar
,
A.
,
2015
, “
Design of Progressively Folding Thin-Walled Tubular Components Using Compliant Mechanism Synthesis
,”
Thin-Walled Struct.
,
95
, pp.
208
220
.
18.
DiPaolo
,
B. P.
,
Monteiro
,
P. J. M.
, and
Gronsky
,
R.
,
2004
, “
Quasi-Static Axial Crush Response of a Thin-Wall, Stainless Steel Box Component
,”
Int. J. Solids Struct.
,
41
(
14
), pp.
3707
3733
.
19.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern-Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.
20.
Zhou
,
C.
,
Wang
,
B.
,
Ma
,
J.
, and
You
,
Z.
,
2016
, “
Dynamic Axial Crushing of Origami Crash Boxes
,”
Int. J. Mech. Sci.
,
118
, pp.
1
12
.
21.
Zhou
,
C.
,
Zhou
,
Y.
, and
Wang
,
B.
,
2017
, “
Crashworthiness Design for Trapezoid Origami Crash Boxes
,”
Thin-Walled Struct.
,
117
, pp.
257
267
.
22.
Zhou
,
C.
,
Jiang
,
L.
,
Tian
,
K.
,
Bi
,
X.
, and
Wang
,
B.
,
2017
, “
Origami Crash Boxes Subjected to Dynamic Oblique Loading
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091006
.
23.
Azarakhsh
,
S.
, and
Ghamarian
,
A.
,
2017
, “
Collapse Behavior of Thin-Walled Conical Tube Clamped at Both Ends Subjected to Axial and Oblique Loads
,”
Thin-Walled Struct.
,
112
, pp.
1
11
.
24.
Zhang
,
H.
, and
Zhang
,
X.
,
2016
, “
Crashworthiness Performance of Conical Tubes With Nonlinear Thickness Distribution
,”
Thin-Walled Struct.
,
99
, pp.
35
44
.
25.
Zhang
,
X.
,
Zhang
,
H.
, and
Wen
,
Z.
,
2015
, “
Axial Crushing of Tapered Circular Tubes With Graded Thickness
,”
Int. J. Mech. Sci.
,
92
, pp.
12
23
.
26.
Zhou
,
C. H.
,
Wang
,
B.
,
Luo
,
H. Z.
,
Chen
,
Y. W.
,
Zeng
,
Q. H.
, and
Zhu
,
S. Y.
,
2017
, “
Quasi-Static Axial Compression of Origami Crash Boxes
,”
Int. J. Appl. Mech.
,
09
(
5
), p.
1750066
.
27.
Yang
,
K.
,
Xu
,
S.
,
Zhou
,
S.
, and
Xie
,
Y. M.
,
2018
, “
Multi-Objective Optimization of Multi-Cell Tubes With Origami Patterns for Energy Absorption
,”
Thin-Walled Struct.
,
123
, pp.
100
113
.
28.
Yang
,
K.
,
Xu
,
S.
,
Shen
,
J.
,
Zhou
,
S.
, and
Xie
,
Y. M.
,
2016
, “
Energy Absorption of Thin-Walled Tubes With Pre-Folded Origami Patterns: Numerical Simulation and Experimental Verification
,”
Thin-Walled Struct.
,
103
, pp.
33
44
.
29.
Shyu
,
T. C.
,
Damasceno
,
P. F.
,
Dodd
,
P. M.
,
Lamoureux
,
A.
,
Xu
,
L.
,
Shlian
,
M.
,
Shtein
,
M.
,
Glotzer
,
S. C.
, and
Kotov
,
N. A.
,
2015
, “
A Kirigami Approach to Engineering Elasticity in Nanocomposites Through Patterned Defects
,”
Nat. Mater.
,
14
(
8
), pp.
785
789
.
30.
Zhang
,
Y.
,
Yan
,
Z.
,
Nan
,
K.
,
Xiao
,
D.
,
Liu
,
Y.
,
Luan
,
H.
,
Fu
,
H.
,
Wang
,
X.
,
Yang
,
Q.
,
Wang
,
J.
,
Ren
,
W.
,
Si
,
H.
,
Liu
,
F.
,
Yang
,
L.
,
Li
,
H.
,
Wang
,
J.
,
Guo
,
X.
,
Luo
,
H.
,
Wang
,
L.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
38
), pp.
11757
11764
.
31.
Blees
,
M. K.
,
Barnard
,
A. W.
,
Rose
,
P. A.
,
Roberts
,
S. P.
,
McGill
,
K. L.
,
Huang
,
P. Y.
,
Ruyack
,
A. R.
,
Kevek
,
J. W.
,
Kobrin
,
B.
,
Muller
,
D. A.
, and
McEuen
,
P. L.
,
2015
, “
Graphene Kirigami
,”
Nature
,
524
(
7564
), pp.
204
207
.
32.
Xue
,
R.
,
Li
,
R.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
,
Sun
,
Z.
, and
Guo
,
X.
,
2017
, “
Kirigami Pattern Design of Mechanically Driven Formation of Complex 3D Structures Through Topology Optimization
,”
Extreme Mech. Lett.
,
15
, pp.
139
144
.
33.
Xu
,
L.
,
Shyu
,
T. C.
, and
Kotov
,
N. A.
,
2017
, “
Origami and Kirigami Nanocomposites
,”
ACS Nano
,
11
(
8
), pp.
7587
7599
.
34.
Del Broccolo
,
S.
,
Laurenzi
,
S.
, and
Scarpa
,
F.
,
2017
, “
AUXHEX – A Kirigami Inspired Zero Poisson's Ratio Cellular Structure
,”
Compos. Struct.
,
176
, pp.
433
441
.
35.
Chen
,
Y.
,
Scarpa
,
F.
,
Remillat
,
C.
,
Farrow
,
I.
,
Liu
,
Y.
, and
Leng
,
J.
,
2013
, “
Curved Kirigami SILICOMB Cellular Structures With Zero Poisson's Ratio for Large Deformations and Morphing
,”
J. Intell. Mater. Syst. Struct.
,
25
(
6
), pp.
731
743
.
36.
Virk
,
K.
,
Monti
,
A.
,
Trehard
,
T.
,
Marsh
,
M.
,
Hazra
,
K.
,
Boba
,
K.
,
Remillat
,
C. D. L.
,
Scarpa
,
F.
, and
Farrow
,
I. R.
,
2013
, “
SILICOMB PEEK Kirigami Cellular Structures: Mechanical Response and Energy Dissipation Through Zero and Negative Stiffness
,”
Smart Mater. Struct.
,
22
(
8
), p.
084014
.
37.
Lamoureux
,
A.
,
Lee
,
K.
,
Shlian
,
M.
,
Forrest
,
S. R.
, and
Shtein
,
M.
,
2015
, “
Dynamic Kirigami Structures for Integrated Solar Tracking
,”
Nat. Commun.
,
6
(
1
), p.
8092
.
38.
Dias
,
M. A.
,
McCarron
,
M. P.
,
Rayneau-Kirkhope
,
D.
,
Hanakata
,
P. Z.
,
Campbell
,
D. K.
,
Park
,
H. S.
, and
Holmes
,
D. P.
,
2017
, “
Kirigami Actuators
,”
Soft Matter
,
13
(
48
), pp.
9087
9092
.
39.
Scarpa
,
F.
,
Ouisse
,
M.
,
Collet
,
M.
, and
Saito
,
K.
,
2013
, “
Kirigami Auxetic Pyramidal Core: Mechanical Properties and Wave Propagation Analysis in Damped Lattice
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041001
.
40.
Fathers
,
R. K.
,
Gattas
,
J. M.
, and
You
,
Z.
,
2015
, “
Quasi-Static Crushing of Eggbox, Cube, and Modified Cube Foldcore Sandwich Structures
,”
Int. J. Mech. Sci.
,
101–102
, pp.
421
428
.
41.
Dharmasena
,
K. P.
,
Wadley
,
H. N. G.
,
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2008
, “
Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High-Intensity Dynamic Loading
,”
Int. J. Impact Eng.
,
35
(
9
), pp.
1063
1074
.
42.
Karagiozova
,
D.
, and
Alves
,
M. L.
,
2004
, “
Transition From Progressive Buckling to Global Bending of Circular Shells Under Axial Impact––Part I: Experimental and Numerical Observations
,”
Int. J. Solids Struct
,
41
(
5–6
), pp.
1565
1580
.
43.
Pan
,
B.
,
Qian
,
K.
,
Xie
,
H.
, and
Asundi
,
A.
,
2009
, “
Two-Dimensional Digital Image Correlation for in-Plane Displacement and Strain Measurement: A Review
,”
Meas. Sci. Technol.
,
20
(
6
), p.
062001
.
44.
ABAQUS
,
2013
, “
ABAQUS Analysis User's Guide, Documentation Version 6.13
,” Dassault Systems Simulia Corp, Providence, RI.
You do not currently have access to this content.