This work presents a micromechanical model to investigate mechanical properties of nanotwinned dual-phase copper, consisting of the coarse grained phase and the nanotwinned phase. Both strengthening mechanisms of nanotwinning and the contributions of nanovoids/microcracks have been taken into account in simulations. With the aid of modified mean-field approach, the stress–strain relationship is derived by combining the constitutive relations of the coarse grained phase and the nanotwinned phase. Numerical results show that the proposed model enables us to describe the mechanical properties of the nanotwinned composite copper, including both yield strength and ductility. The calculations based on the proposed model agree well with the results from finite element method (FEM). The predicted yield strength and ductility are sensitive to the twin spacing, grain size, as well as the volume fractions of phases in this composite copper. These results will benefit the optimization of both strength and ductility by controlling constituent fractions and the size of the microstructures in metallic materials.

References

1.
Weertman
,
J. R.
,
Farkas
,
D.
,
Hemker
,
K.
,
Kung
,
H.
,
Mayo
,
M.
,
Mitra
,
R.
,
Van Swygenhoven
,
H.
,
1999
, “
Structure and Mechanical Behavior of Bulk Nanocrystalline Materials
,”
Mater. Res. Soc. Bull.
,
24
(
2
), pp.
44
50
.
2.
Kumar
,
K. S.
,
Van Swygenhoven
,
H.
, and
Suresh
,
S.
,
2003
, “
Mechanical Behavior of Nanocrystalline Metals and Alloys
,”
Acta Mater.
,
51
(
19
), pp.
5743
5774
.
3.
Zhu
,
T.
, and
Li
,
J.
,
2010
, “
Ultra-Strength Materials
,”
Prog. Mater. Sci.
,
55
(
7
), pp.
710
757
.
4.
Suryanarayana
,
C.
,
2012
, “
Mechanical Behavior of Emerging Materials
,”
Mater. Today
,
15
(
11
), pp.
486
496
.
5.
Zhu
,
Y. T.
, and
Liao
,
X. Z.
,
2004
, “
Nanostructured Metals: Retaining Ductility
,”
Nat. Mater.
,
3
(
6
), pp.
351
352
.
6.
Meyers
,
M. A.
,
Mishra
,
A.
, and
Benson
,
D. J.
,
2006
, “
Mechanical Properties of Nanocrystalline Materials
,”
Prog. Mater. Sci.
,
51
(
4
), pp.
427
556
.
7.
Ritchie
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
.
8.
Kou
,
H. N.
,
Lu
,
J.
, and
Li
,
Y.
,
2014
, “
High-Strength and High-Ductility Nanostructured and Amorphous Metallic Materials
,”
Adv. Mater.
,
26
(
31
), pp.
5518
5524
.
9.
Lu
,
L.
,
Shen
,
Y. F.
,
Chen
,
X. H.
,
Qian
,
L. H.
, and
Lu
,
K.
,
2004
, “
Ultrahigh Strength and High Electrical Conductivity in Copper
,”
Science
,
304
(
5669
), pp.
422
426
.
10.
Dao
,
M.
,
Lu
,
L.
,
Asaro
,
R. J.
,
De Hosson
,
J. T. M.
, and
Ma
,
E.
,
2007
, “
Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals
,”
Acta Mater.
,
55
(
12
), pp.
4041
4065
.
11.
Wang
,
Y. M.
,
Chen
,
M. W.
,
Zhou
,
F. H.
, and
Ma
,
E.
,
2002
, “
Extraordinarily High Tensile Ductility in a Nanostructured Metal
,”
Nature
,
419
(
6910
), pp.
912
915
.
12.
Zhao
,
Y. H.
,
Topping
,
T.
,
Bingert
,
J. F.
,
Thornton
,
J. J.
,
Dangelewicz
,
A. M.
,
Li
,
Y.
,
Liu
,
W.
,
Zhu
,
Y.
,
Zhou
,
Y.
, and
Lavernia
,
E. J.
,
2008
, “
High Tensile Ductility and Strength in Bulk Nanostructured Nickel
,”
Adv. Mater.
,
20
(
16
), pp.
3028
3033
.
13.
Li
,
Y. S.
,
Zhang
,
Y.
,
Tao
,
N. R.
, and
Lu
,
K.
,
2008
, “
Effect of Thermal Annealing on Mechanical Properties of a Nanostructured Copper Prepared by Means of Dynamic Plastic Deformation
,”
Scr. Mater.
,
59
(
4
), pp.
475
478
.
14.
Dirras
,
G.
,
Gubicza
,
J.
,
Bui
,
Q. H.
, and
Szilagyi
,
T.
,
2010
, “
Microstructure and Mechanical Characteristics of Bulk Polycrystalline Ni Consolidated From Blends of Powders With Different Particle Size
,”
Mater. Sci. Eng. A.
,
527
(
4–5
), pp.
1206
1214
.
15.
Lu
,
L.
,
Chen
,
X.
,
Huang
,
X.
, and
Lu
,
K.
,
2009
, “
Revealing the Maximum Strength in Nano-Twinned Copper
,”
Science
,
323
(
5914
), pp.
607
610
.
16.
Lu
,
K.
,
Lu
,
L.
, and
Suresh
,
S.
,
2009
, “
Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale
,”
Science
,
324
(
5925
), pp.
349
352
.
17.
Chen
,
A. Y.
,
Ruan
,
H. H.
,
Wang
,
J.
,
Chan
,
H. L.
,
Wang
,
Q.
,
Li
,
Q.
, and
Lu
,
J.
,
2011
, “
The Influence of Strain Rate on the Microstructure Transition of 304 Stainless Steel
,”
Acta Mater
,
59
(
9
), pp.
3697
3709
.
18.
Chen
,
A. Y.
,
Li
,
D. F.
,
Zhang
,
J. B.
,
Song
,
H. W.
, and
Lu
,
J.
,
2008
, “
Make Nanostructured Metal Exceptionally Tough by Introducing Non-Localized Fracture Behaviors
,”
Scr. Mater.
,
59
(
6
), pp.
579
582
.
19.
Lu
,
K.
,
Yan
,
F. K.
,
Wang
,
H. T.
, and
Tao
,
N. R.
,
2012
, “
Strengthening Austenitic Steels by Using Nanotwinned Austenitic Grains
,”
Scr. Mater.
,
66
(
11
), pp.
878
883
.
20.
Yan
,
F. K.
,
Liu
,
G. Z.
,
Tao
,
N. R.
, and
Lu
,
K.
,
2012
, “
Strength and Ductility of 316L Austenitic Stainless Steel Strengthened by Nano-Scale Twin Bundles
,”
Acta Mater.
,
60
(
3
), pp.
1059
1071
.
21.
Yan
,
F. K.
,
Tao
,
N. R.
,
Archie
,
F.
,
Gutierrez-Urrutia
,
I.
,
Raabe
,
D.
, and
Lu
,
K.
,
2014
, “
Deformation Mechanisms in an Austenitic Single-Phase Duplex Microstructured Steel With Nanotwinned Grains
,”
Acta Mater.
,
81
, pp.
487
500
.
22.
Joshi
,
S. P.
,
Ramesh
,
K. T.
,
Han
,
B. Q.
, and
Lavernia
,
E. J.
,
2006
, “
Modeling the Constitutive Response of Bimodal Metals
,”
Metall. Mater. Trans. A
,
37
(
8
), pp.
2397
23404
.
23.
Berbenni
,
S.
,
Favier
,
V.
, and
Berveiller
,
M.
,
2007
, “
Impact of the Grain Size Distribution on the Yield Stress of Heterogeneous Materials
,”
Int. J. Plast.
,
23
(
1
), pp.
114
142
.
24.
Ramtani
,
S.
,
Dirras
,
G.
, and
Bui
,
H. Q.
,
2010
, “
A Bimodal Bulk Ultra-Fine-Grained Nickel: Experimental and Micromechanical Investigations
,”
Mech. Mater.
,
42
(
5
), pp.
522
536
.
25.
Zhu
,
L. L.
, and
Lu
,
J.
,
2012
, “
Modelling the Plastic Deformation of Nanostructured Metals With Bimodal Grain Size Distribution
,”
Int. J. Plast.
,
30–31
, pp.
166
184
.
26.
Zhu
,
L. L.
,
Shi
,
S. Q.
,
Lu
,
K.
, and
Lu
,
J.
,
2012
, “
A Statistical Model for Predicting the Mechanical Properties of Nanostructured Metals With Bimodal Grain Size Distribution
,”
Acta Mater.
,
60
(
16
), pp.
5762
5772
.
27.
Guo
,
X.
,
Ji
,
R.
,
Weng
,
G. J.
,
Zhu
,
L. L.
, and
Lu
,
J.
,
2014
, “
Micromechanical Simulation of Fracture Behavior of Bimodal Nanostructured Metals
,”
Mater. Sci. Eng. A.
,
618
, pp.
479
489
.
28.
Guo
,
X.
,
Dai
,
X. Y.
,
Weng
,
G. J.
,
Zhu
,
L. L.
, and
Lu
,
J.
,
2014
, “
Numerical Investigation of Fracture Behavior of Nanostructured Cu With Bimodal Grain Size Distribution
,”
Acta Mech.
,
225
(
4
), pp.
1093
1106
.
29.
Guo
,
X.
,
Ji
,
R.
,
Weng
,
G. J.
,
Zhu
,
L. L.
, and
Lu
,
J.
,
2014
, “
Computer Simulation of Strength and Ductility of Nanotwin-Strengthened Coarse-Grained Metals
,”
Modell. Simul. Mater. Sci. Eng.
,
22
(
7
), p.
075014
.
30.
Froseth
,
A.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
,
2004
, “
Grown-In Twin Boundaries Affecting Deformation Mechanisms in NC-Metals
,”
Appl. Phys. Lett.
,
85
(
24
), pp.
5863
5865
.
31.
Wang
,
J.
, and
Huang
,
H.
,
2006
, “
Novel Deformation Mechanism of Twinned Nanowires
,”
Appl. Phys. Lett.
,
88
(
20
), p.
203112
.
32.
Li
,
X. Y.
,
Wei
,
Y. J.
,
Lu
,
L.
,
Lu
,
K.
, and
Gao
,
H. J.
,
2010
, “
Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals
,”
Nature
,
464
(
7290
), pp.
877
880
.
33.
You
,
Z. S.
,
Li
,
X. Y.
,
Gui
,
L. G.
,
Lu
,
Q. H.
,
Zhu
,
T.
,
Gao
,
H. J.
, and
Lu
,
L.
,
2013
, “
Plastic Anisotropy and Associated Deformation Mechanisms in Nanotwinned Metals
,”
Acta Mater.
,
61
(
1
), pp.
217
227
.
34.
Zhou
,
H. F.
, and
Gao
,
H. J.
,
2015
, “
A Plastic Deformation Mechanism by Necklace Dislocations Near Crack-Like Defects in Nanotwinned Metals
,”
ASME J. Appl. Mech.
,
82
(
7
), p.
071015
.
35.
Dao
,
M.
,
Lu
,
L.
,
Shen
,
Y.
, and
Suresh
,
S.
,
2006
, “
Strength, Strain-Rate Sensitivity and Ductility of Copper With Nanoscale Twins
,”
Acta Mater.
,
54
(
20
), pp.
5421
5432
.
36.
Jerusalem
,
A.
,
Dao
,
M.
,
Suresh
,
S.
, and
Radovitzky
,
R.
,
2008
, “
Three-Dimensional Model of Strength and Ductility of Polycrystalline Copper Containing Nanoscale Twins
,”
Acta Mater.
,
56
(
17
), pp.
4647
4657
.
37.
Mirkhani
,
H.
, and
Joshi
,
S. P.
,
2011
, “
Crystal Plasticity of Nanotwinned Microstructures: A Discrete Twin Approach for Copper
,”
Acta Mater.
,
59
(
14
), pp.
5603
5617
.
38.
Zhu
,
L. L.
,
Ruan
,
H. H.
,
Li
,
X. Y.
,
Dao
,
M.
,
Gao
,
H. J.
, and
Lu
,
J.
,
2011
, “
Modeling Grain Size Dependent Optimal Twin Spacing for Achieving Ultimate High Strength and Related High Ductility in Nanotwinned Metals
,”
Acta Mater.
,
59
(
14
), pp.
5544
5557
.
39.
Zhang
,
X.
,
Romanov
,
A. E.
, and
Aifantis
,
E. C.
,
2015
, “
A Simple Physically Based Phenomenological Model for the Strengthening/Softening Behavior of Nanotwinned Copper
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121005
.
40.
Huang
,
Y.
,
Qu
,
S.
,
Hwang
,
K. C.
,
Li
,
M.
, and
Gao
,
H.
,
2004
, “
A Conventional Theory of Mechanism-Based Strain Gradient Plasticity
,”
Int. J. Plast.
,
20
(
4–5
), pp.
753
782
.
41.
Zhu
,
L. L.
,
Qu
,
S. X.
,
Guo
,
X.
, and
Lu
,
J.
,
2015
, “
Analysis of the Twin Spacing and Grain Size Effects on Mechanical Properties in Hierarchically Nanotwinned Face-Centered Cubic Metals Based on a Mechanism-Based Plasticity Model
,”
J. Mech. Phys. Solid
,
76
, pp.
162
179
.
42.
Kocks
,
U. F.
, and
Mecking
,
H.
,
2003
, “
The Physics and Phenomenology of Strain Hardening
,”
Prog. Mater. Sci.
,
48
(
3
), pp.
171
273
.
43.
Capolungo
,
L.
,
Jochum
,
C.
,
Cherkaoui
,
M.
, and
Qu
,
J.
,
2005
, “
Homogenization Method for Strength and Inelastic Behavior of Nanocrystalline Materials
,”
Int. J. Plast.
,
21
(
1
), pp.
67
82
.
44.
Sinclair
,
C. W.
,
Poole
,
W. J.
, and
Bréchet
,
Y.
,
2006
, “
A Model for the Grain Size Dependent Work Hardening of Copper
,”
Scr. Mater.
,
55
(
8
), pp.
739
742
.
45.
Bouaziz
,
O.
,
Allain
,
S.
, and
Scott
,
C.
,
2008
, “
Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steel
,”
Scr. Mater.
,
58
(
6
), pp.
484
487
.
46.
Kachanov
,
M.
,
1994
, “
Elastic Solids With Many Cracks and Related Problems
,”
Adv. Appl. Mech.
,
30
, pp.
259
445
.
47.
Han
,
B. Q.
,
Lee
,
Z.
,
Witkin
,
D.
,
Nutt
,
S. R.
, and
Lavernia
,
E. J.
,
2005
, “
Deformation Behavior of Bimodal Nanostructured 5083 Al Alloys
,”
Metall. Mater. Trans.
,
36
(
4
), pp.
957
965
.
48.
Lee
,
Z. H.
,
Radmilovic
,
V.
,
Ahn
,
B.
,
Lavernia
,
E. J.
, and
Nutt
,
S. R.
,
2010
, “
Tensile Deformation and Fracture Mechanism of Bulk Bimodal Ultrafine-Grained Al–Mg Alloy
,”
Metall. Mater. Trans. A
,
41
(
4
), pp.
795
801
.
49.
Wang
,
H.
,
Nie
,
A.
,
Liu
,
J.
,
Wang
,
P.
,
Yang
,
W.
,
Chen
,
B.
,
Liu
,
H.
, and
Fu
,
M.
,
2011
, “
In Situ TEM Study on Crack Propagation in Nanoscale Au Thin Films
,”
Scr. Mater.
,
65
(
5
), pp.
377
379
.
50.
Bilay
,
A.
, and
Eshelby
,
J. D.
,
1969
, “
Dislocations and the Theory of Fracture
,”
Fracture
, Vol.
I
,
H.
Liebowitz
, ed.,
Academic Press
,
New York
, pp.
99
182
.
51.
Gao
,
H.
,
Huang
,
Y.
,
Gumbsch
,
P.
, and
Rosakis
,
A. J.
,
1999
, “
On Radiation-Free Transonic Motion of Cracks and Dislocations
,”
J. Mech. Phys. Solids
,
47
(
9
), pp.
1941
1961
.
52.
Liu
,
X. W.
, and
Lu
,
J.
, “
High Strength and High Ductility Cu Obtained by Topologically Controlled Planar Heterogenous Structures
,” Scr. Mater. (submitted).
53.
Weng
,
G. J.
,
1990
, “
The Overall Elastoplastic Stress–Strain Relation of Dual-Phase Metals
,”
J. Mech. Phys. Solid
,
38
(
3
), pp.
419
441
.
54.
Weng
,
G. J.
,
2009
, “
A Homogenization Scheme for the Plastic Properties of Nanocrystalline Materials
,”
Rev. Adv. Mater. Sci.
,
19
(
1–2
), pp.
41
62
.
55.
Guo
,
X.
,
Ouyang
,
Q. D.
,
Weng
,
G. J.
, and
Zhu
,
L. L.
,
2016
, “
The Direct and Indirect Effect of Nanotwin Volume Fraction on the Strength and Ductility of Coarse-Grained Metals
,”
Mater. Sci. Eng. A
,
657
, pp.
234
243
.
You do not currently have access to this content.