Static and dynamic responses of a circular cylindrical shell made of hyperelastic arterial material are studied. The material is modeled as a combination of Neo-Hookean and Fung materials. Two types of pressure loads are studied—distributed radial forces and deformation-dependent pressure. The static responses of the shell under these two loads differ essentially at moderate strains, while the behavior is similar for small loads. The principal difference is that the axial displacements are much larger for the shell under distributed radial forces, while for actual pressure the shell is stretched both in circumferential and axial directions. Free and forced vibrations around preloaded configurations are analyzed. In both cases, the nonlinearity of the single-mode (driven mode) response of the preloaded shell is quite weak, but a resonant regime with both driven and companion modes active has been found with more complicated nonlinear dynamics.

References

1.
Lamé
,
G.
,
1852
,
Leçons sur la théorie mathématique de l'élasticité des corps solides
,
Bachelier
,
Paris
.
2.
Love
,
A. E. H.
,
1927
,
A Treatise on the Mathematical Theory of Elasticity
, 4th ed.,
Cambridge University Press
,
Cambridge, UK
.
3.
Alijani
,
F.
, and
Amabili
,
M.
,
2014
, “
Non-Linear Vibrations of Shells: A Literature Review From 2003 to 2013
,”
Int. J. Non-Linear Mech.
,
58
, pp.
233
257
.
4.
Lurie
,
A. I.
,
2005
,
Theory of Elasticity
,
Springer-Verlag
,
Berlin
.
5.
Lopes
,
S. R. X.
,
Gonçalves
,
P. B.
, and
Pamplona
,
D. C.
,
2007
, “
Influence of Initial Geometric Imperfections on the Stability of Thick Cylindrical Shells Under Internal Pressure
,”
Commun. Numer. Methods Eng.
,
23
(
6
), pp.
577
597
.
6.
Gonçalves
,
P. B.
,
Pamplona
,
D.
, and
Lopes
,
S. R. X.
,
2008
, “
Finite Deformations of an Initially Stressed Cylindrical Shell Under Internal Pressure
,”
Int. J. Mech. Sci.
,
50
(
1
), pp.
92
103
.
7.
Guo
,
Z.
,
Wang
,
S.
,
Li
,
L.
,
Ji
,
H.
,
Wang
,
Z.
, and
Cai
,
S.
,
2014
, “
Inflation of Stressed Cylindrical Tubes: An Experimental Study
,”
Proc. SPIE
,
9234
, p.
92340H
.
8.
Haughton
,
D. M.
, and
Ogden
,
R. W.
,
1979
, “
Bifurcation of Inflated Circular Cylinders of Elastic Material Under Axial Loading—II: Exact Theory for Thick-Walled Tubes
,”
J. Mech. Phys. Solids
,
27
(
5–6
), pp.
489
512
.
9.
Akyuz
,
U.
, and
Ertepinar
,
A.
,
1998
, “
Stability and Asymmetric Vibrations of Pressurized Compressible Hyperelastic Cylindrical Shells
,”
Int. J. Non-Linear Mech.
,
34
(
3
), pp.
391
404
.
10.
Chen
,
Y.-C.
, and
Haughton
,
D. M.
,
2003
, “
Stability and Bifurcation of Inflation of Elastic Cylinders
,”
Proc. R. Soc. London, Ser. A
,
459
(
2029
), pp.
137
156
.
11.
Zhu
,
Y.
,
Luo
,
X. Y.
, and
Ogden
,
R. W.
,
2008
, “
Asymmetric Bifurcations of Thick-Walled Circular Cylindrical Elastic Tubes Under Axial Loading and External Pressure
,”
Int. J. Solids Struct.
,
45
(
11–12
), pp.
3410
3429
.
12.
Zhu
,
Y.
,
Luo
,
X. Y.
, and
Ogden
,
R. W.
,
2010
, “
Nonlinear Axisymmetric Deformations of an Elastic Tube Under External Pressure
,”
Eur. J. Mech. A/Solids
,
29
(
2
), pp.
216
229
.
13.
Zhu
,
Y.
,
Luo
,
X. Y.
,
Wang
,
H. M.
,
Ogden
,
R. W.
, and
Berry
,
C.
,
2013
, “
Three-Dimensional Non-Linear Buckling of Thick-Walled Elastic Tubes Under Pressure
,”
Int. J. Non-Linear Mech.
,
48
, pp.
1
14
.
14.
Kozlovsky
,
P.
,
Zaretsky
,
U.
,
Jaffa
,
A. J.
, and
Elad
,
D.
,
2014
, “
General Tube Law for Collapsible Thin and Thick-Wall Tubes
,”
J. Biomech.
,
47
(
10
), pp.
2378
2384
.
15.
Knowles
,
J. K.
,
1960
, “
Large Amplitude Oscillations of a Tube of Incompressible Elastic Material
,”
Q. Appl. Math.
,
18
, pp.
71
77
.
16.
Knowles
,
J. K.
,
1962
, “
On a Class of Oscillations in the Finite Deformation Theory of Elasticity
,”
ASME J. Appl. Mech.
,
29
(
2
), pp.
283
286
.
17.
Wang
,
A. S. D.
, and
Ertepinar
,
A.
,
1972
, “
Stability and Vibrations of Elastic Thick-Walled Cylindrical and Spherical Shells Subjected to Pressure
,”
Int. J. Non-Linear Mech.
,
7
(
5
), pp.
539
555
.
18.
Calderer
,
C.
,
1983
, “
The Dynamical Behaviour of Nonlinear Elastic Spherical Shells
,”
J. Elasticity
,
13
(
1
), pp.
17
47
.
19.
Ren
,
J.-S.
,
2008
, “
Dynamical Response of Hyper-Elastic Cylindrical Shells Under Periodic Load
,”
Appl. Math. Mech.
,
29
(
10
), pp.
1319
1327
.
20.
Breslavsky
,
I.
,
Amabili
,
M.
, and
Legrand
,
M.
,
2014
, “
Physically and Geometrically Non-Linear Vibrations of Thin Rectangular Plates
,”
Int. J. Non-Linear Mech.
,
58
, pp.
30
40
.
21.
Amabili
,
M.
,
Karazis
,
K.
,
Mongrain
,
R.
,
Païdoussis
,
M. P.
, and
Cartier
,
R.
,
2012
, “
A Three-Layer Model for Buckling of a Human Aortic Segment Under Specific Flow-Pressure Conditions
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
5
), pp.
495
512
.
22.
Breslavsky
,
I. D.
,
Amabili
,
M.
, and
Legrand
,
M.
,
2014
, “
Nonlinear Vibrations of Thin Hyperelastic Plates
,”
J. Sound Vib.
,
333
(
19
), pp.
4668
4681
.
23.
Holzapfel
,
G. A.
,
2006
, “
Determination of Material Models for Arterial Walls From Uniaxial Extension Tests and Histological Structure
,”
J. Theor. Biol.
,
238
(
2
), pp.
290
302
.
24.
Amabili
,
M.
, and
Breslavsky
,
I. D.
,
2015
, “
Displacement Dependent Pressure Load for Finite Deflection of Shells and Plates
,”
Int. J. Non-Linear Mech.
,
77
, pp.
265
273
.
25.
Breslavsky
,
I. D.
,
Amabili
,
M.
, and
Legrand
,
M.
, 2016, “
Axisymmetric Deformations of Circular Rings Made of Linear and Neo-Hookean Materials Under Internal and External Pressure
,”
Int. J. Non-Linear Mech.
(to be published).
26.
Amabili
,
M.
, and
Reddy
,
J. N.
,
2010
, “
A New Non-Linear Higher-Order Shear Deformation Theory for Large-Amplitude Vibrations of Laminated Doubly Curved Shells
,”
Int. J. Non-Linear Mech.
,
45
(
4
), pp.
409
418
.
27.
Ogden
,
R.
,
1997
,
Non-Linear Elastic Deformations
,
Dover Publications
,
New York
.
28.
Amabili
,
M.
,
2008
,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
,
New York
.
29.
Atkinson
,
K. E.
,
1989
,
An Introduction to Numerical Analysis
, 2nd ed.,
Wiley
,
New York
.
30.
Amabili
,
M.
,
2015
, “
A New Third-Order Shear Deformation Theory With Non-Linearities in Shear for Static and Dynamic Analysis of Laminated Doubly Curved Shells
,”
Compos. Struct.
,
128
, pp.
260
273
.
31.
Leissa
,
A. W.
,
1973
,
Vibrations of Shells
,
National Aeronautics and Space Administration
,
Washington, DC
.
32.
Parker
,
T. S.
, and
Chua
,
L. O.
,
1989
,
Practical Numerical Algorithms for Chaotic Systems
,
Springer-Verlag
,
New York
.
33.
Doedel
,
E. J.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Sandstede
,
B.
, and
Wang
,
X.
,
1998
,
AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont)
,
Concordia University
,
Montreal, QC
, Canada.
You do not currently have access to this content.