Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD.

References

1.
Urban
,
J. P. G.
, and
Roberts
,
S.
,
2003
, “
Degeneration of the Intervertebral Disc
,”
Arthritis Res. Ther.
,
5
(
3
), pp.
120
130
.
2.
Antoniou
,
J.
,
Steffen
,
T.
,
Nelson
,
F.
,
Winterbottom
,
N.
,
Hollander
,
A. P.
,
Poole
,
R. A.
,
Aebi
,
M.
, and
Alini
,
M.
,
1996
, “
The Human Lumbar Intervertebral Disc—Evidence for Changes in the Biosynthesis and Denaturation of the Extracellular Matrix With Growth, Maturation, Ageing, and Degeneration
,”
J. Clin. Invest.
,
98
(
4
), pp.
996
1003
.
3.
Urban
,
J. P.
, and
Maroudas
,
A.
,
1981
, “
Swelling of the Intervertebral Disc In Vitro
,”
Connect Tissue Res.
,
9
(
1
), pp.
1
10
.
4.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
5.
Donnan
,
F. G.
,
1924
, “
The Theory of Membrane Equilibria
,”
Chem. Rev.
,
1
(
1
), pp.
73
90
.
6.
Iatridis
,
J. C.
,
Weidenbaum
,
M.
,
Setton
,
L. A.
, and
Mow
,
V. C.
,
1996
, “
Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc
,”
Spine
,
21
(
10
), pp.
1174
1184
.
7.
Vos
,
T.
,
Flaxman
,
A.
, and
Naghavi
,
M.
,
2014
, “
Years Lived With Disability (YLDs) for 1160 Sequelae of 289 Diseases and Injuries 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010 (Vol 380, pg 2163, 2012)
,”
Lancet
,
384
(
9943
), p.
582
.
8.
Schmidt
,
H.
,
Galbusera
,
F.
,
Rohlmann
,
A.
, and
Shirazi-Adl
,
A.
,
2013
, “
What Have We Learned From Finite Element Model Studies of Lumbar Intervertebral Discs in the Past Four Decades?
,”
J. Biomech.
,
46
(
14
), pp.
2342
2355
.
9.
Belytschko
,
T.
,
Kulak
,
R. F.
,
Schultz
,
A. B.
, and
Galante
,
J. O.
,
1974
, “
Finite Element Stress Analysis of an Intervertebral Disc
,”
J. Biomech.
,
7
(
3
), pp.
277
285
.
10.
Schmidt
,
H.
,
Heuer
,
F.
,
Drumm
,
J.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Application of a Calibration Method Provides More Realistic Results for a Finite Element Model of a Lumbar Spinal Segment
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
4
), pp.
377
384
.
11.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A.
,
2001
, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
3
), pp.
209
229
.
12.
Laible
,
J. P.
,
Pflaster
,
D. S.
,
Krag
,
M. H.
,
Simon
,
B. R.
, and
Haugh
,
L. D.
,
1993
, “
A Poroelastic-Swelling Finite-Element Model With Application to the Intervertebral Disc
,”
Spine
,
18
(
5
), pp.
659
670
.
13.
Argoubi
,
M.
, and
ShiraziAdl
,
A.
,
1996
, “
Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression
,”
J. Biomech.
,
29
(
10
), pp.
1331
1339
.
14.
Schroeder
,
Y.
,
Huyghe
,
J. M.
,
van Donkelaar
,
C. C.
, and
Ito
,
K.
,
2010
, “
A Biochemical/Biophysical 3D FE Intervertebral Disc Model
,”
Biomech. Model. Mechanobiol.
,
9
(
5
), pp.
641
650
.
15.
Karajan
,
N.
,
2012
, “
Multiphasic Intervertebral Disc Mechanics: Theory and Application
,”
Arch. Comput. Methods Eng.
,
19
(
2
), pp.
261
339
.
16.
Jacobs
,
N. T.
,
Cortes
,
D. H.
,
Peloquin
,
J. M.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2014
, “
Validation and Application of an Intervertebral Disc Finite Element Model Utilizing Independently Constructed Tissue-Level Constitutive Formulations that are Nonlinear, Anisotropic, and Time-Dependent
,”
J. Biomech.
,
47
(
11
), pp.
2540
2546
.
17.
Ehlers
,
W.
,
Karajan
,
N.
, and
Markert
,
B.
,
2009
, “
An Extended Biphasic Model for Charged Hydrated Tissues With Application to the Intervertebral Disc
,”
Biomech. Model. Mechanobiol.
,
8
(
3
), pp.
233
251
.
18.
Yao
,
H.
, and
Gu
,
W. Y.
,
2006
, “
Physical Signals and Solute Transport in Human Intervertebral Disc During Compressive Stress Relaxation: 3D Finite Element Analysis
,”
Biorheology
,
43
(
3–4
), pp.
323
335
.
19.
Iatridis
,
J. C.
,
Laible
,
J. P.
, and
Krag
,
M. H.
,
2003
, “
Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (PEACE) Model
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
12
24
.
20.
Sun
,
D. D. N.
, and
Leong
,
K. W.
,
2004
, “
A Nonlinear Hyperelastic Mixture Theory Model for Anisotropy, Transport, and Swelling of Annulus Fibrosus
,”
Ann. Biomed. Eng.
,
32
(
1
), pp.
92
102
.
21.
Lanir
,
Y.
,
1987
, “
Biorheology and Fluid Flux in Swelling Tissues.1. Bicomponent Theory for Small Deformations, Including Concentration Effects
,”
Biorheology
,
24
(
2
), pp.
173
187
.
22.
Wilson
,
W.
,
van Donkelaar
,
C. C.
, and
Huyghe
,
J. M.
,
2005
, “
A Comparison Between Mechano-Electrochemical and Biphasic Swelling Theories for Soft Hydrated Tissues
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
158
165
.
23.
Gao
,
X.
, and
Gu
,
W.
,
2014
, “
A New Constitutive Model for Hydration-Dependent Mechanical Properties in Biological Soft Tissues and Hydrogels
,”
J. Biomech.
,
47
(
12
), pp.
3196
3200
.
24.
Perie
,
D.
,
Korda
,
D.
, and
Iatridis
,
J. C.
,
2005
, “
Confined Compression Experiments on Bovine Nucleus Pulposus and Annulus Fibrosus: Sensitivity of the Experiment in the Determination of Compressive Modulus and Hydraulic Permeability
,”
J. Biomech.
,
38
(
11
), pp.
2164
2171
.
25.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
(
6
), pp.
535
544
.
26.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus—Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
256
263
.
27.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
,
1999
, “
The Anisotropic Hydraulic Permeability of Human Lumbar Anulus Fibrosus—Influence of Age, Degeneration, Direction, and Water Content
,”
Spine
,
24
(
23
), pp.
2449
2455
.
28.
Jackson
,
A. R.
,
Yuan
,
T. Y.
,
Huang
,
C. Y.
,
Brown
,
M. D.
, and
Gu
,
W. Y.
,
2012
, “
Nutrient Transport in Human Annulus Fibrosus is Affected by Compressive Strain and Anisotropy
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2551
2558
.
29.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.
30.
Frijns
,
A. J. H.
,
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
A Validation of the Quadriphasic Mixture Theory for Intervertebral Disc Tissue
,”
Int. J. Eng. Sci.
,
35
(
15
), pp.
1419
1429
.
31.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), p.
447
.
32.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1999
, “
A Mixed Finite Element Formulation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
(
10
), pp.
1375
1402
.
33.
Yao
,
H.
, and
Gu
,
W. Y.
,
2007
, “
Convection and Diffusion in Charged Hydrated Soft Tissues: A Mixture Theory Approach
,”
Biomech. Model. Mechanobiol.
,
6
(
1–2
), pp.
63
72
.
34.
Ehlers
,
W.
, and
Eipper
,
G.
,
1999
, “
Finite Elastic Deformations in Liquid-Saturated and Empty Porous Solids
,”
Transp. Porous Med.
,
34
(
1–3
), pp.
179
191
.
35.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(
1–3
), pp.
1
48
.
36.
Federico
,
S.
, and
Herzog
,
W.
,
2008
, “
On the Permeability of Fibre-Reinforced Porous Materials
,”
Int. J. Solids Struct.
,
45
(
7–8
), pp.
2160
2172
.
37.
Gu
,
W. Y.
,
Yao
,
H.
,
Huang
,
C. Y.
, and
Cheung
,
H. S.
,
2003
, “
New Insight Into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression
,”
J. Biomech.
,
36
(
4
), pp.
593
598
.
38.
Gu
,
W. Y.
,
Yao
,
H.
,
Vega
,
A. L.
, and
Flagler
,
D.
,
2004
, “
Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity
,”
Ann. Biomed. Eng.
,
32
(
12
), pp.
1710
1717
.
39.
Broberg
,
K. B.
,
1983
, “
On the Mechanical-Behavior of Intervertebral Disks
,”
Spine
,
8
(
2
), pp.
151
165
.
40.
O’Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2007
, “
Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry
,”
Spine
,
32
(
3
), pp.
328
333
.
41.
Urban
,
J. P. G.
, and
Maroudas
,
A.
,
1979
, “
Measurement of Fixed Charge-Density in the Intervertebral-Disk
,”
Biochim. Biophys. Acta
,
586
(
1
), pp.
166
178
.
42.
Iatridis
,
J. C.
,
MacLean
,
J. J.
,
O’Brien
,
M.
, and
Stokes
,
I. A. F.
,
2007
, “
Measurements of Proteoglycan and Water Content Distribution in Human Lumbar Intervertebral Discs
,”
Spine
,
32
(
14
), pp.
1493
1497
.
43.
Ruiz
,
C.
,
Noailly
,
J.
, and
Lacroix
,
D.
,
2013
, “
Material Property Discontinuities in Intervertebral Disc Porohyperelastic Finite Element Models Generate Numerical Instabilities Due to Volumetric Strain Variations
,”
J. Mech. Behav. Biomed.
,
26
, pp.
1
10
.
44.
Cortes
,
D. H.
,
Jacobs
,
N. T.
,
DeLucca
,
J. F.
, and
Elliott
,
D. M.
,
2014
, “
Elastic, Permeability and Swelling Properties of Human Intervertebral Disc Tissues: A Benchmark for Tissue Engineering
,”
J. Biomech.
,
47
(
9
), pp.
2088
2094
.
45.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
, V
. C.
,
1997
, “
Alterations in the Mechanical Behavior of the Human Lumbar Nucleus Pulposus With Degeneration and Aging
,”
J. Orthopaed. Res.
,
15
(
2
), pp.
318
322
.
46.
Farrell
,
M. D.
, and
Riches
,
P. E.
,
2013
, “
On the Poisson’s Ratio of the Nucleus Pulposus
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
104501
.
47.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, and
Mow
, V
. C.
,
1999
, “
Shear Mechanical Properties of Human Lumbar Annulus Fibrosus
,”
J. Orthopaed. Res.
,
17
(
5
), pp.
732
737
.
48.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W. B.
,
Saednejad
,
F.
,
Ratcliffe
,
A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1994
, “
Compressive Mechanical-Properties of the Human Anulus Fibrosus and Their Relationship to Biochemical-Composition
,”
Spine
,
19
(
2
), pp.
212
221
.
49.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1996
, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
,
21
(
4
), pp.
452
461
.
50.
Yao
,
H.
, and
Gu
,
W. Y.
,
2004
, “
Physical Signals and Solute Transport in Cartilage Under Dynamic Unconfined Compression: Finite Element Analysis
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
380
390
.
51.
Lu
,
Y. M.
,
Hutton
,
W. C.
, and
Gharpuray
,
V. M.
,
1996
, “
Do Bending, Twisting, and Diurnal Fluid Changes in the Disc Affect the Propensity to Prolapse? A Viscoelastic Finite Element Model
,”
Spine
,
21
(
22
), pp.
2570
2579
.
52.
O’Connell
,
G. D.
,
Jacobs
,
N. T.
,
Sen
,
S.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration
,”
J. Mech. Behav. Biomed.
,
4
(
7
), pp.
933
942
.
53.
Mcnally
,
D. S.
, and
Arridge
,
R. G. C.
,
1995
, “
An Analytical Model of Intervertebral Disc Mechanics
,”
J. Biomech.
,
28
(
1
), pp.
53
68
.
54.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
,
40
(
2
), pp.
271
280
.
55.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical-Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1310
1319
.
56.
Adams
,
M. A.
, and
Roughley
,
P. J.
,
2006
, “
What is Intervertebral Disc Degeneration, and What Causes it?
,”
Spine
,
31
(
18
), pp.
2151
2161
.
57.
Stokes
,
I. A. F.
,
Laible
,
J. P.
,
Gardner-Morse
,
M. G.
,
Costi
,
J. J.
, and
Iatridis
,
J. C.
,
2011
, “
Refinement of Elastic, Poroelastic, and Osmotic Tissue Properties of Intervertebral Disks to Analyze Behavior in Compression
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
122
131
.
58.
Setton
,
L. A.
, and
Chen
,
J.
,
2006
, “
Mechanobiology of the Intervertebral Disc and Relevance to Disc Degeneration
,”
J. Bone Jt. Surg. Am.
,
88A
, pp.
52
57
.
59.
Iatridis
,
J. C.
,
Furukawa
,
M.
,
Stokes
,
I. A. F.
,
Gardner-Morse
,
M. G.
, and
Laible
,
J. P.
,
2009
, “
Spatially Resolved Streaming Potentials of Human Intervertebral Disk Motion Segments Under Dynamic Axial Compression
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
031006
.
You do not currently have access to this content.