Although many researches on the dynamic behavior of honeycombs have been reported, the strain rate effect of parent materials was frequently neglected, giving rise to the underestimated plateau stress and energy absorption (EA). In this paper, the strain rate effect of parent materials on the out-of-plane dynamic compression and EA of metallic honeycombs is evaluated by both numerical simulation and theoretical analysis. The numerical results show that the plateau stress and the EA increase significantly if the strain rate effect is considered. To account for the strain rate effect, a new theoretical model to evaluate the dynamic compressive plateau stress of metallic honeycombs is proposed by introducing the Cowper–Symonds relation into the shock theory. Predictions of the present model agree fairly well with the numerical results and existing experimental data. Based on the present model, the plateau stress is divided into three terms, namely static term, strain rate term, and inertia term, and thus the influences of each term can be analyzed quantitatively. According to the analysis, strain rate effect is much more important than inertia effect over a very wide range of impact velocity.

References

1.
McFarland
,
R. K.
,
1963
, “
Hexagonal Cell Structures Under Post-Buckling Axial Load
,”
AIAA J.
,
1
(
6
), pp.
1380
1385
.10.2514/3.1798
2.
Wierzbicki
,
T.
,
1983
, “
Crushing Analysis of Metal Honeycombs
,”
Int. J. Impact Eng.
,
1
(
2
), pp.
157
174
.10.1016/0734-743X(83)90004-0
3.
Zhang
,
J.
, and
Ashby
,
M. F.
,
1992
, “
The Out-of-Plane Properties of Honeycombs
,”
Int. J. Mech. Sci.
,
34
(
6
), pp.
475
489
.10.1016/0020-7403(92)90013-7
4.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
5.
Aktay
,
L.
,
Johnson
,
A. F.
, and
Kröplin
,
B. H.
,
2008
, “
Numerical Modeling of Honeycomb Core Crush Behavior
,”
Eng. Fract. Mech.
,
75
(
9
), pp.
2616
2630
.10.1016/j.engfracmech.2007.03.008
6.
Wilbert
,
A.
,
Jang
,
W. Y.
,
Kyriakides
,
S.
, and
Floccari
,
J. F.
,
2011
, “
Buckling and Progressive Crushing of Laterally Loaded Honeycomb
,”
Int. J. Solids Struct.
,
48
(
5
), pp.
803
816
.10.1016/j.ijsolstr.2010.11.014
7.
Goldsmith
,
W.
, and
Sackman
,
J. L.
,
1992
, “
An Experimental Study of Energy Absorption in Impact on Sandwich Plates
,”
Int. J. Impact Eng.
,
12
(
2
), pp.
241
262
.10.1016/0734-743X(92)90447-2
8.
Goldsmith
,
W.
, and
Louie
,
D. L.
,
1995
, “
Axial Perforation of Aluminum Honeycombs by Projectiles
,”
Int. J. Solids Struct.
,
32
(
8
), pp.
1017
1046
.10.1016/0020-7683(94)00188-3
9.
Wu
,
E.
, and
Jang
,
W. S.
,
1997
, “
Axial Crush of Metallic Honeycombs
,”
Int. J. Impact Eng.
,
19
(
5
), pp.
439
456
.10.1016/S0734-743X(97)00004-3
10.
Baker
,
W. E.
,
Togami
,
T. C.
, and
Weydert
,
J. C.
,
1998
, “
Static and Dynamic Properties of High-Density Metal Honeycombs
,”
Int. J. Impact Eng.
,
21
(
3
), pp.
149
163
.10.1016/S0734-743X(97)00040-7
11.
Zhao
,
H.
, and
Gary
,
G.
,
1998
, “
Crushing Behaviour of Aluminium Honeycombs Under Impact Loading
,”
Int. J. Impact Eng.
,
21
(
10
), pp.
827
836
.10.1016/S0734-743X(98)00034-7
12.
Harrigan
,
J. J.
,
Reid
,
S. R.
, and
Peng
,
C.
,
1999
, “
Inertia Effects in Impact Energy Absorbing Materials and Structures
,”
Int. J. Impact Eng.
,
22
(
9
), pp.
955
979
.10.1016/S0734-743X(99)00037-8
13.
Zhou
,
Q.
, and
Mayer
,
R. R.
,
2002
, “
Characterization of Aluminum Honeycomb Material Failure in Large Deformation Compression, Shear, and Tearing
,”
ASME J. Eng. Mater. Technol.
,
124
(
4
), pp.
412
420
.10.1115/1.1491575
14.
Zhao
,
H.
,
Elnasri
,
I.
, and
Abdennadher
,
S.
,
2005
, “
An Experimental Study on the Behaviour Under Impact Loading of Metallic Cellular Materials
,”
Int. J. Mech. Sci.
,
47
(
4
), pp.
757
774
.10.1016/j.ijmecsci.2004.12.012
15.
Wang
,
Z.
,
Tian
,
H.
,
Lu
,
Z.
, and
Zhou
,
W.
,
2014
, “
High-Speed Axial Impact of Aluminum Honeycomb—Experiments and Simulations
,”
Compos., Part B
,
56
(
1
), pp.
1
8
.10.1016/j.compositesb.2013.07.013
16.
Reid
,
S. R.
, and
Peng
,
C.
,
1997
, “
Dynamic Uniaxial Crushing of Wood
,”
Int. J. Impact Eng.
,
19
(
5
), pp.
531
570
.10.1016/S0734-743X(97)00016-X
17.
Ruan
,
D.
,
Lu
,
G.
,
Wang
,
B.
, and
Yu
,
T. X.
,
2003
, “
In-Plane Dynamic Crushing of Honeycombs—A Finite Element Study
,”
Int. J. Impact Eng.
,
28
(
2
), pp.
161
182
.10.1016/S0734-743X(02)00056-8
18.
Tan
,
P. J.
,
Reid
,
S. R.
,
Harrigan
,
J. J.
,
Zou
,
Z.
, and
Li
,
S.
,
2005
, “
Dynamic Compressive Strength Properties of Aluminium Foams. Part I—Experimental Data and Observations
,”
J. Mech. Phys. Solids
,
53
(
10
), pp.
2174
2205
.10.1016/j.jmps.2005.05.007
19.
Tan
,
P. J.
,
Reid
,
S. R.
,
Harrigan
,
J. J.
,
Zou
,
Z.
, and
Li
,
S.
,
2005
, “
Dynamic Compressive Strength Properties of Aluminium Foams. Part II—‘Shock’ Theory and Comparison With Experimental Data and Numerical Models
,”
J. Mech. Phys. Solids
,
53
(
10
), pp.
2206
2230
.10.1016/j.jmps.2005.05.003
20.
Elnasri
,
I.
,
Pattofatto
,
S.
,
Zhao
,
H.
,
Tsitsiris
,
H.
,
Hild
,
F.
, and
Girard
,
Y.
,
2007
, “
Shock Enhancement of Cellular Structures Under Impact Loading: Part I Experiments
,”
J. Mech. Phys. Solids
,
55
(
12
), pp.
2652
2671
.10.1016/j.jmps.2007.04.005
21.
Pattofatto
,
S.
,
Elnasri
,
I.
,
Zhao
,
H.
,
Tsitsiris
,
H.
,
Hild
,
F.
, and
Girard
,
Y.
,
2007
, “
Shock Enhancement of Cellular Structures Under Impact Loading: Part II Analysis
,”
J. Mech. Phys. Solids
,
55
(
12
), pp.
2672
2686
.10.1016/j.jmps.2007.04.004
22.
Qiu
,
X. M.
,
Zhang
,
J.
, and
Yu
,
T. X.
,
2009
, “
Collapse of Periodic Planar Lattices Under Uniaxial Compression, Part II: Dynamic Crushing Based on Finite Element Simulation
,”
Int. J. Impact Eng.
,
36
(
10
), pp.
1231
1241
.10.1016/j.ijimpeng.2009.05.010
23.
Zou
,
Z.
,
Reid
,
S. R.
,
Tan
,
P. J.
,
Li
,
S.
, and
Harrigan
,
J. J.
,
2009
, “
Dynamic Crushing of Honeycombs and Features of Shock Fronts
,”
Int. J. Impact Eng.
,
36
(
1
), pp.
165
176
.10.1016/j.ijimpeng.2007.11.008
24.
Tan
,
P. J.
,
Reid
,
S. R.
, and
Harrigan
,
J. J.
,
2012
, “
On the Dynamic Mechanical Properties of Open-Cell Metal Foams—A Re-Assessment of the ‘Simple-Shock Theory’
,”
Int. J. Solids Struct.
,
49
(
19–20
), pp.
2744
2753
.10.1016/j.ijsolstr.2012.03.026
25.
Yamashita
,
M.
, and
Gotoh
,
M.
,
2005
, “
Impact Behavior of Honeycomb Structures With Various Cell Specifications—Numerical Simulation and Experiment
,”
Int. J. Impact Eng.
,
32
(
1
), pp.
618
630
.10.1016/j.ijimpeng.2004.09.001
26.
Sun
,
G. Y.
,
Li
,
G. Y.
,
Stone
,
M.
, and
Li
,
Q.
,
2010
, “
A Two-Stage Multi-Fidelity Optimization Procedure for Honeycomb-Type Cellular Materials
,”
Comput. Mater. Sci.
,
49
(
3
), pp.
500
511
.10.1016/j.commatsci.2010.05.041
27.
Sun
,
D. Q.
,
Zhang
,
W. H.
, and
Wei
,
Y. B.
,
2010
, “
Mean Out-of-Plane Dynamic Plateau Stresses of Hexagonal Honeycomb Cores Under Impact Loadings
,”
Compos. Struct.
,
92
(
11
), pp.
2609
2621
.10.1016/j.compstruct.2010.03.016
28.
Hou
,
B.
,
Zhao
,
H.
,
Pattofatto
,
S.
,
Liu
,
J. G.
, and
Li
,
Y. L.
,
2012
, “
Inertia Effects on the Progressive Crushing of Aluminium Honeycombs Under Impact Loading
,”
Int. J. Solids Struct.
,
49
(
19
), pp.
2754
2762
.10.1016/j.ijsolstr.2012.05.005
29.
Partovi
,
M. A.
,
Toprak
,
T.
, and
Muğan
,
A.
,
2014
, “
Numerical and Experimental Study of Crashworthiness Parameters of Honeycomb Structures
,”
Thin Wall Struct.
,
78
(
1
), pp.
87
94
.10.1016/j.tws.2013.12.012
30.
Liu
,
Y. D.
,
Yu
,
J. L.
,
Zheng
,
Z. J.
, and
Li
,
J. R.
,
2009
, “
A Numerical Study on the Rate Sensitivity of Cellular Metals
,”
Int. J. Solids Struct.
,
46
(
22
), pp.
3988
3998
.10.1016/j.ijsolstr.2009.07.024
31.
Kim
,
H. S.
,
2002
, “
New Extruded Multi-Cell Aluminum Profile for Maximum Crash Energy Absorption and Weight Efficiency
,”
Thin Wall Struct.
,
40
(
4
), pp.
311
327
.10.1016/S0263-8231(01)00069-6
32.
D’Mello
,
R. J.
, and
Waas
,
A. M.
,
2013
, “
In-Plane Crush Response and Energy Absorption of Circular Cell Honeycomb Filled With Elastomer
,”
Compos. Struct.
,
106
(
1
), pp.
491
501
.10.1016/j.compstruct.2013.05.054
33.
Gotoh
,
M.
,
Yamashita
,
M.
, and
Kawakita
,
A.
,
1996
, “
Crush Behavior of Honeycomb Structure Impacted by Drop-Hammer and Its Numerical Analysis
,”
Mater. Sci. Res. Int.
,
2
(
4
), pp.
261
266
.10.2472/jsms.45.12Appendix_261
34.
Hooputra
,
H.
,
Gese
,
H.
,
Dell
,
H.
, and
Werner
,
H.
,
2004
, “
A Comprehensive Failure Model for Crashworthiness Simulation of Aluminium Extrusions
,”
Int. J. Crashworthiness
,
9
(
5
), pp.
449
464
.10.1533/ijcr.2004.0289
35.
Heimbs
,
S.
,
2009
, “
Virtual Testing of Sandwich Core Structures Using Dynamic Finite Element Simulations
,”
Comput. Mater. Sci.
,
45
(
2
), pp.
205
216
.10.1016/j.commatsci.2008.09.017
36.
Cowper
,
G. R.
, and
Symonds
,
P. S.
,
1957
, “
Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams
,” Division of Applied Mathematics Report No. 28, Brown University, Providence, RI.
37.
Bodner
,
S. R.
, and
Symonds
,
P. S.
,
1962
, “
Experimental and Theoretical Investigation of the Plastic Deformation of Cantilever Beams Subjected to Impulsive Loading
,”
ASME J. Appl. Mech.
,
29
(
4
), pp.
719
728
.10.1115/1.3640660
38.
Alavi
,
N. A.
, and
Sadeghi
,
M. Z.
,
2013
, “
An Experimental Investigation on the Effect of Strain Rate on the Behaviour of Bare and Foam-Filled Aluminium Honeycombs
,”
Mater. Des.
,
52
(
1
), pp.
748
756
.10.1016/j.matdes.2013.06.006
You do not currently have access to this content.