The first-passage problem of quasi-nonintegrable Hamiltonian systems subject to light linear/nonlinear dampings and weak external/parametric random excitations is investigated here. The motivation is to acquire asymptotic analytical solution of the first-passage rate or the mean first-passage time based on the averaged Itô stochastic differential equation for quasi-nonintegrable Hamiltonian systems. By using the probability current equation and the Laplace integral method, a new method is proposed to obtain the asymptotic analytical expressions for the first-passage rate in the case of high passage threshold. The associated functions such as the reliability function and the probability density function of first-passage time can then be obtained from the first-passage rate. High passage threshold is the crucial condition for the validity of the proposed method. The random bistable oscillator is studied as an illustrative example using the method. The analytical result obtained from the asymptotic analysis shows its consistency with the Kramers formula. A coupled two-degree-of-freedom (2DOF) nonlinear oscillator subjected to stochastic excitations is studied to illustrate the procedure of acquiring the asymptotic analytical solution. The results obtained from the analytical solution agree well with those from numerical simulation, which verifies the accuracy of the proposed method.

References

1.
Hänggi
,
P.
,
Talkner
,
P.
, and
Borkovec
,
M.
,
1990
, “
Reaction Rate Theory: Fifty Years After Kramers
,”
Rev. Mod. Phys.
,
62
(
2
), pp.
251
342
.10.1103/RevModPhys.62.251
2.
Ebeling
,
W.
,
Schimansky-Geier
,
W. L.
, and
Romanovsky
,
Y. M.
,
2002
,
Stochastic Dynamics of Reacting Biomolecules
,
Word Scientific
,
Singapore
.
3.
van Kampen
,
N. G.
,
1981
,
Stochastic Processes in Physics and Chemistry
,
North-Holland
,
Amsterdam
.
4.
Houston
,
P. L.
,
2001
,
Chemical Kinetics and Reaction Dynamics
,
McGraw-Hill
,
Dubuque, IA
.
5.
Connors
,
K. A.
,
1990
,
Chemical Kinetics: The Study of Reaction Rates in Solution
,
Wiley-VCH
,
New York
.
6.
Schlick
,
T.
, ed.,
2012
,
Innovations in Biomolecular Modeling and Simulations
, Vol.
2
,
Royal Society of Chemistry
, Cambridge, UK.10.1039/9781849735056
7.
Reimann
,
P.
,
Schmid
,
G. J.
, and
Hänggi
,
P.
,
1999
, “
Universal Equivalence of Mean First Passage Time and Kramers Rate
,”
Phys. Rev. E
,
60
(
1
), pp.
R1
R4
.10.1103/PhysRevE.60.R1
8.
Cramer
,
H.
, and
Leadbetter
,
M. R.
,
1967
,
Stationary and Related Stochastic Processes
,
Wiley
,
New York
.
9.
Bharucha-Reid
,
A. T.
,
1960
,
Elements of Markov Processes and Their Applications
,
McGraw-Hill
,
New York
.
10.
Cox
,
D. R.
, and
Miller
,
H. D.
,
1965
,
The Theory of Stochastic Processes, Chapman and Hall
,
New York
.
11.
Zhu
,
W. Q.
, and
Yang
,
Y. Q.
,
1997
, “
Stochastic Averaging of Quasi-Nonintegrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
157
164
.10.1115/1.2787267
12.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Yang
,
Y. Q.
,
1997
, “
Stochastic Averaging of Quasi-Integrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
64
(
4
), pp.
975
984
.10.1115/1.2789009
13.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Suzuki
,
Y.
,
2002
, “
Stochastic Averaging and Lyapunov Exponent of Quasi-Partially-Integrable-Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
,
37
(
3
), pp.
419
437
.10.1016/S0020-7462(01)00018-X
14.
Zhu
,
W. Q.
,
2006
, “
Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation
,”
ASME Appl. Mech. Rev.
,
59
(
4
), pp.
230
248
.10.1115/1.2193137
15.
Deng
,
M. L.
, and
Zhu
,
W. Q.
,
2007
, “
Stochastic Averaging of MDOF Quasi Integrable Hamiltonian Systems Under Wide-Band Random Excitation
,”
J. Sound Vib.
,
305
(
4–5
), pp.
783
794
.10.1016/j.jsv.2007.04.048
16.
Deng
,
M. L.
, and
Zhu
,
W. Q.
,
2012
, “
Stochastic Energy Transition of Peptide-Bond Under Action of Hydrolytic Enzyme
,”
Probab. Eng. Mech.
,
27
(
1
), pp.
8
13
.10.1016/j.probengmech.2011.05.002
17.
Miller
,
P. D.
,
2006
,
Applied Asymptotic Analysis
,
American Mathematical Society
,
Providence, RI
.
18.
Wong
,
E.
, and
Zakai
,
M.
,
1965
, “
On the Relation Between Ordinary and Stochastic Equations
,”
Int. J. Eng. Sci.
,
3
(
2
), pp.
213
229
.10.1016/0020-7225(65)90045-5
19.
Tabor
,
M.
,
1989
,
Chaos and Integrability in Nonlinear Dynamics
,
Wiley
,
New York
.
20.
Khsminskii
,
R. Z.
,
1968
, “
On the Principle of Averaging the Itov's Stochastic Differential Equations
,”
Kibernetika
,
4
(
3
), pp.
260
279
(in Russian), available at: http://dml.cz/dmlcz/124632
21.
Gan
,
C. B.
, and
Zhu
,
W. Q.
,
2001
, “
First-Passage Failure of Quasi-Non-Integrable-Hamiltonian System
,”
Int. J. Non-Linear Mech.
,
36
(
2
), pp.
209
220
.10.1016/S0020-7462(00)00006-8
22.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Deng
,
M. L.
,
2002
, “
Feedback Minimization of First-Passage Failure of Quasi-Nonintegrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
,
37
(
6
), pp.
1057
1071
.10.1016/S0020-7462(01)00030-0
23.
Deng
,
M. L.
, and
Zhu
,
W. Q.
,
2007
, “
Energy Diffusion Controlled Reaction Rate in Dissipative Hamiltonian Systems
,”
Chin. Phys.
,
16
(
6
), pp.
1510
1515
.10.1088/1009-1963/16/6/003
24.
Deng
,
M. L.
, and
Zhu
,
W. Q.
,
2012
, “
Stochastic Energy Transition of Peptide-Bond Under Action of Hydrolytic Enzyme
,”
Probab. Eng. Mech.
,
27
(
1
), pp.
8
13
.10.1016/j.probengmech.2011.05.002
25.
Zhu
,
W. Q.
, and
Deng
,
M. L.
,
2004
, “
Optimal Bounded Control for Minimizing the Response of Quasi-Nonintegrable Hamiltonian Systems
,”
Nonlinear Dyn.
,
35
(
1
), pp.
81
100
.10.1023/B:NODY.0000017495.70390.b3
You do not currently have access to this content.